REDACCIÓ DEL PROJECTE D'AMPLIACIÓ I MILLORA DEL TRACTAMENT A L'EDAR DE FORMENTERA. PROYECTO CONSTRUCTIVO

ambling"

Anejo nº12. Cálculos eléctricos

REDACCIÓ DEL PROJECTE D'AMPLIACIÓ I MILLORA DEL TRACTAMENT A L'EDAR DE FORMENTERA.

EXPEDIENT DE CONTRACTACIÓ NÚM: SE/2020/20

PROYECTO CONSTRUCTIVO

Índice

1	Int	trod	ucción y objeto	3
2	Est	tado	actual	3
3	De	scri	oción de las modificaciones eléctricas	3
4			ida de potencias	
5			os de baja tensión	
	5.1		mulación empleada en el dimensionamiento	
	5.1	.1	Intensidad de cálculo	8
	5.1	.2	Fórmula conductividad eléctrica	8
	5.1	.3	Fórmulas sobrecargas	9
	5.1	.4	Fórmulas compensación energía reactiva	9
	5.1	.5	Fórmulas cortocircuito	10
	5.1	.6	Fórmulas embarrados	12
	5.2		nanda de potencia nuevo CCM	
	5.3	Cálo	culo de la acometida al nuevo CCM4	13
	5.4	Cálo	culos de las líneas a receptores principales	15
	5.5		as a otros receptores	
	5.6		rección del factor de potencia	
	5.7		culo de la puesta a tierra	
	5.8	Estu	ıdio de seguridad frente al riesgo causado por la acción del rayo	22
6	Cá	lcul	os luminotécnicos	25
	6.1	Alur	mbrado exterior	25
	6.2	Alur	mbrado interior	
	6.2	.1	Cálculo de las luminarias	
	6.2	.2	Cálculo de las emergencias	28

PROYECTO CONSTRUCTIVO

1 Introducción y objeto

El presente anejo tiene por objeto la definición del dimensionamiento de las instalaciones eléctricas del proyecto de ampliación y mejora del tratamiento de la EDAR de Formentera.

2 Estado actual

Actualmente la EDAR de Formentera cuenta con el siguiente equipamiento eléctrico:

- Centro de transformación (CT) de 630 KVAs en edificio prefabricado.
- Cuadro general de baja tensión (CGBT)
- Cuadro de control de motores CCM nº1, de pretratamiento y tratamiento físico-químico (ubicado en el edificio de control).
- CCM nº2 de tratamiento biológico (ubicado en el edificio de soplantes).
- CCM nº3 de tratamiento de fangos y desinfección (ubicado en el edificio de control)
- Grupo electrógeno de emergencia de 72 KVA para dar servicio al CCM1

El estado actual del equipamiento eléctrico es aceptable teniendo en cuenta las reformas/ampliaciones que se han realizado a lo largo de los años, si bien hay equipamiento que en la actualidad está en desuso y no se ha desmantelado ni el equipamiento propiamente dicho ni las protecciones eléctricas asociadas, por lo que nos encontramos con que hay partes de los actuales CCMs que no están en funcionamiento.

3 Descripción de las modificaciones eléctricas

La ampliación y mejora del tratamiento de la EDAR de Formentera consiste básicamente en:

- Construcción de una nueva arqueta de llegada
- Construcción de un nuevo pretratamiento con tamizado, desarenado y equipos para tratamiento de arenas y grasas.
- Construcción de un tanque de laminación de caudales
- Construcción de un nuevo tratamiento de recepción de fosas sépticas
- Realización de una serie de mejoras en el equipamiento del reactor biológico consistentes en la instalación de una nueva soplante, nuevos difusores, nuevo bombeo de recirculación interna y nuevos agitadores de la zona anoxica.
- Nuevo reparto a decantación secundaria
- Construcción de un tercer decantador con bombeo de recirculación, excesos y flotantes.
- Construcción de un nuevo digestor de fangos y bombeo de fango digerido
- Construcción de un nuevo espesamiento.
- Nueva desodorización de pretratamiento y de deshidratación

La instalación eléctrica de los equipos asociados a estos nuevos procesos se va a hacer íntegramente en un nuevo CCM, que denominaremos CCM nº4, y se ubicará en el nuevo edificio de pretratamiento.

Para este CCM nº4 se instalará en el CGBT existente una nueva salida protegida mediante interruptor magnetotérmico automático de 250 A en una envolvente metálica de 800 x 600 con puentes de conexión con el embarrado general.

Se modificará la instalación del grupo electrógeno para dar servicio en emergencia a este nuevo CCM dado que el actual pretratamiento se va a desmantelar.

PROYECTO CONSTRUCTIVO

Por otro lado, algunos equipos nuevos que van a ser instalados van a sustituir a equipos que están controlados desde CCMs existentes, por lo que se realizará una adaptación en los mismos. Esto ocurre en el CCM nº 2 del tratamiento biológico donde se van a sustituir las bombas de recirculación interna, los agitadores de la zona anóxica y una de las soplantes. Se realizarán las modificaciones necesarias en este CCM nº2 para dejar operativos los nuevos equipos.

Por último, la remodelación dejará fuera de servicio equipamiento actual que o está obsoleto y sin uso actualmente o quedará fuera de servicio con esta remodelación, esto ocurre en mayor medida en el CCM nº1 de pretratamiento actual. Se ha previsto una partida para recomponer este CCM nº1 y desmontar las partes que quedan fuera de servicio.

El CCM nº3 existente (deshidratación) no se modifica, únicamente se sustituye el PLC actual por uno nuevo.

A continuación, se adjunta un listado de receptores de los motores de la instalación actual y se relacionan los equipos que se incorporan (marcados en amarillo) y los que se anulan (marcados en verde).

		ESTADO	O ACUTAL			ESTADO R	EFORMAD)
CCM nº1 Pretratamiento	Uds	Uds	Potencia	Potencia	Uds	Uds	Potencia	Potencia
	instalad.	función.	instal.	simultan.	instalad	funcion	instal	simultan
Bomba poli espesamiento 1	1,00	1,00	0,22	0,22				
Bomba poli espesamiento 1	1,00	0,00	0,22	0,00				
Agitador espesamiento	1,00	1,00	1,50	1,50				
Bomba fangos a								
espesamiento 1	1,00	1,00	4,00	4,00				
Bomba fangos a								
espesamiento 2	1,00	0,00	4,00	0,00				
Agitador poli	1,00	1,00	0,55	0,55	1,00	1,00	0,55	0,55
Reductores silo fango 2x1,50	1,00	1,00	3,00	3,00	1,00	1,00	3,00	3,00
Decantador secundario 2	1,00	1,00	0,55	0,55	1,00	1,00	0,55	0,55
Bomba flotantes	1,00	1,00	2,00	2,00	1,00	1,00	2,00	2,00
Decantador secundario 1	1,00	1,00	0,55	0,55	1,00	1,00	0,55	0,55
Agitador F-Q fangos	1,00	0,00	0,25	0,00				
Floculador F-Q fangos	1,00	0,00	0,37	0,00				
Bomba hipoclorito 1	1,00	1,00	0,22	0,22	1,00	1,00	0,22	0,22
Bomba hipoclorito 2	1,00	0,00	0,22	0,00	1,00	0,00	0,22	0,00
Espesador de fangos 1	1,00	1,00	0,00	0,00				
Compresor	1,00	1,00	2,20	2,20				
Turbina aireación 1	1,00	0,00	16,00	0,00				
Turbina aireación 2	1,00	0,00	16,00	0,00				
Espesador de fangos 2	1,00	1,00	0,00	0,00				
Subcuadro equipo de poli F-Q								
fangos	1,00	0,00	0,00	0,00				
Subcuadro grupo presión								
cloración	1,00	1,00	2,20	2,20	1,00	1,00	2,20	2,20
Tamiz rotativo 1	1,00	1,00	0,55	0,55				
Tamiz rotativo 2	1,00	1,00	0,55	0,55				
Tornillo compactador	1,00	1,00	1,10	1,10				
Soplante desarenado 1	1,00	0,00	0,00	0,00				
Soplante desarenado 2	1,00	0,00	0,00	0,00				
Puente desarenador	1,00	0,00	0,00	0,00				
Equipo lavador de arenas	1,00	1,00	0,75	0,75				

ambling"

PROYECTO CONSTRUCTIVO

		ESTADO	O ACUTAL			ESTADO R	EFORMAD	0
CCM nº1 Pretratamiento	Uds	Uds	Potencia	Potencia	Uds	Uds	Potencia	Potencia
	instalad.	función.	instal.	simultan.	instalad	funcion	instal	simultan
Agitador F-Q línea agua	1,00	1,00	0,75	0,75	1,00	1,00	0,75	0,75
Floculador F-Q línea agua	1,00	1,00	2,20	2,20	1,00	1,00	2,20	2,20
Decantador densadeg	1,00	1,00	2,20	2,20	1,00	1,00	2,20	2,20
Bomba Cl3Fe 1 Reserva	1,00	0,00	0,22	0,00	1,00	0,00	0,22	0,00
Bomba Cl3Fe 2 F-Q línea agua	1,00	1,00	0,22	0,22	1,00	1,00	0,22	0,22
Bomba Cl3Fe 3 biológico	1,00	1,00	0,22	0,22	1,00	1,00	0,22	0,22
Bomba Cl3Fe 4 F-Q fosas								
sépticas	1,00	0,00	0,22	0,00	1,00	0,00	0,22	0,00
Bomba poli 1 F-Q línea agua	1,00	1,00	0,22	0,22	1,00	1,00	0,22	0,22
Bomba poli 2 F-Q línea agua	1,00	0,00	0,22	0,00	1,00	0,00	0,22	0,00
Bomba recirculacion de								
fangos 1 F-Q	1,00	1,00	2,20	2,20	1,00	1,00	2,20	2,20
Bomba recirculacion de								
fangos 2 F-Q	1,00	1,00	2,20	2,20	1,00	1,00	2,20	2,20
Bomba recirculacion de								
fangos 3 F-Q	1,00	0,00	2,20	0,00	1,00	0,00	2,20	0,00
Reja de finos fosa séptica	1,00	1,00	2,00	2,00				
Tornillo transportador reja								
finos	1,00	1,00	2,20	2,20				
Bomba aireación fosas 1	1,00	1,00	3,00	3,00				
Bomba aireación fosas 2	1,00	0,00	3,00	0,00				
Bomba de vaciados 1	1,00	1,00	4,00	4,00	1,00	1,00	4,00	4,00
Bomba de vaciados 2	1,00	0,00	4,00	0,00	1,00	0,00	4,00	0,00
Ventilador desodorización								
fosas	1,00	1,00	11,00	11,00				
Subcuadro equipo de poli F-Q								
línea agua	1,00	1,00	3,00	3,00	1,00	1,00	3,00	3,00
EBAR San Francesc	1,00	1,00	15,00	15,00	1,00	1,00	15,00	15,00
EBAR San Fernando	1,00	1,00	15,00	15,00	1,00	1,00	15,00	15,00
TOTAL (Kw)			132,27	85,35			63,36	56,28

CCM nº 2 Tratamiento		Actuali	idad		Reforma			
biológico	Uds instal.	Uds funcion.	Pot. instal.	Pot. simult.	Uds instal.	Uds funcion.	Pot. instal.	Pot. simult.
Agitador anoxia 1	1,00	1,00	2,50	2,50				
Agitador anoxia 2	1,00	1,00	2,50	2,50				
Nuevo agitador zona anoxica 1					1,00	1,00	2,90	2,90
Nuevo agitador zona anoxica 2					1,00	1,00	2,90	2,90
Agitador aireada 1	1,00	1,00	2,50	2,50	1,00	1,00	2,50	2,50
Agitador aireada 2	1,00	1,00	2,50	2,50	1,00	1,00	2,50	2,50
Agitador aireada 3	1,00	1,00	2,50	2,50	1,00	1,00	2,50	2,50
Agitador aireada 4	1,00	1,00	2,50	2,50	1,00	1,00	2,50	2,50
Soplante 2 Aerzen 1	1,00	1,00	45,00	45,00	1,00	1,00	45,00	45,00
Soplante 3 Aerzen 2	1,00	1,00	45,00	45,00	1,00	1,00	45,00	45,00
Soplante 1 Pedro Gil	1,00	0,00	55,00	0,00				

ambling"

PROYECTO CONSTRUCTIVO

Nueva soplante Aerzen					1,00	0,00	45,00	0,00
Bomba recirculación licor mixto 1	1,00	1,00	4,70	4,70				
Bomba recirculación licor mixto 2	1,00	1,00	4,70	4,70				
Bomba recirculación licor mixto 1					1,00	1,00	3,00	3,00
Bomba recirculación licor mixto 2					1,00	1,00	3,00	3,00
Bomba recirc. externa dec 2 nº1	1,00	1,00	4,70	4,70	1,00	1,00	4,70	4,70
Bomba recirc. externa dec 2 nº2	1,00	0,00	4,70	0,00	1,00	0,00	0,00	0,00
Bomba fango exceso dec nº2	1,00	1,00	2,00	2,00	1,00	1,00	2,00	2,00
Bomba fango exceso dec nº1	1,00	1,00	2,00	2,00	1,00	0,00	2,00	0,00
Bomba recirc. externa dec 1 nº1	1,00	1,00	3,10	3,10	1,00	1,00	3,10	3,10
Bomba recirc. externa dec 1 nº2	1,00	0,00	3,10	0,00	1,00	0,00	0,00	0,00
Ventilador sala soplante	1,00	1,00	0,55	0,55	1,00	1,00	0,55	0,55
Tornillo dosificador cal	1,00	1,00	0,75	0,75	1,00	1,00	0,75	0,75
Agitador cuba cal	1,00	1,00	0,37	0,37	1,00	1,00	0,37	0,37
Rompe bóvedas cal	1,00	1,00	0,12	0,12	1,00	1,00	0,12	0,12
Bomba lechada cal 1	1,00	1,00	1,50	1,50	1,00	1,00	1,50	1,50
Bomba lechada cal 2	1,00	0,00	1,50	0,00	1,00	0,00	0,00	0,00
TOTAL (Kw)			193,79	129,49			171,89	124,89

CCM nº 3 Deshidratación		Actual	idad		Reforma			
CCIVI II- 3 Desiliuratacion	Uds instal.	Uds funcion.	Pot. instal.	Pot. simult.	Uds instal.	Uds funcion.	Pot. instal.	Pot. simult.
Filtro prensa grupo hidráulico	1,00	1,00	5,50	5,50	1,00	1,00	5,50	5,50
Filtro prensa bomba alimentación	1,00	1,00	55,00	55,00	1,00	1,00	55,00	55,00
Transporte placas	1,00	1,00	0,55	0,55	1,00	1,00	0,55	0,55
Tornillo transporte filtro prensa	1,00	1,00	2,20	2,20	1,00	1,00	2,20	2,20
Bombas poli filtro prensa	1,00	1,00	0,37	0,37	1,00	1,00	0,37	0,37
Bomba fango a silo	1,00	1,00	15,00	15,00	1,00	1,00	15,00	15,00
Rompebóveda bomba fango	1,00	1,00	1,50	1,50	1,00	1,00	1,50	1,50
TOTAL (Kw)			80,12	80,12			80,12	80,12

4 Demanda de potencias

Los motores a que dará servicio el nuevo CCM nº 4 proyectado son los siguientes:

NUEVO CCM	Uds Inst.	Uds funcionando	Potencia motor	Potencia instalada	Potencia simultanea
Tamiz aliviadero	1	1	0,70	0,70	0,70
Tamices de finos	2	2	2,20	4,40	4,40
Tornillo compactador tamices	1	1	1,50	1,50	1,50
Subcuadro puente desarenador	1	1	3,00	3,00	3,00
Aeroflotadores desarenador	3	3	0,65	1,95	1,95

ambling"

PROYECTO CONSTRUCTIVO

NUEVO CCM	Uds Inst.	Uds funcionando	Potencia motor	Potencia instalada	Potencia simultanea
Clasificador de arenas	1	1	0,75	0,75	0,75
Concentrador de grasas	1	1	0,25	0,25	0,25
Compresor aire	1	1	2,20	2,20	2,20
Desodorización pretratamiento	1	1	11,00	11,00	11,00
Subcuadro edificio pretratamiento	1	1	5,75	5,75	5,75
Bombas recuperación tanque	2	1	9,00	18,00	9,00
Reja fosas sépticas	1	1	0,55	0,55	0,55
Tornillo compactador reja fosas	1	1	1,50	1,50	1,50
Subcuadro cuchara fosas sépticas	1	1	4,00	4,00	4,00
Bombas recuperación fosas	2	1	1,30	2,60	1,30
Bomba aireación fosas sépticas	1	1	2,20	2,20	2,20
Compuerta regulación caudal F-Q	1	1	0,16	0,16	0,16
Compuerta regulación caudal biológico	1	1	0,16	0,16	0,16
Decantador secundario	1	1	0,55	0,55	0,55
Bombas de recirculación L3	2	1	3,00	6,00	3,00
Bombas de exceso L3	2	1	1,30	2,60	1,30
Bombas de flotantes L3	2	1	1,30	2,60	1,30
Mecanismo espesador fangos	1	1	0,25	0,25	0,25
Desodorización espesador	1	1	5,50	5,50	5,50
Aireadores digestores L1	2	2	16,00	32,00	32,00
Aireadores digestores L2	2	2	16,00	32,00	32,00
Bombas fangos digestores L1	2	1	1,30	2,60	1,30
Bombas fangos digestores L2	2	1	1,30	2,60	1,30
Subcuadro edificio taller	1	1	5,75	5,75	5,75
Totales				153,12	134,62

Con todo, la potencia total demandada por toda la instalación tras la reforma es la siguiente:

DECENTABLE.	А	ctual	Re	forma	
RECEPTORES	Instalada	Funcionando	Instalada	Funcionando	
CCM nº1 Pretratamiento y F-Q	132,27	85,35	63,36	56,28	
CCM nº2 Tratamiento biológico	193,79	129,49	171,89	124,89	
CCM nº3 Tratamiento de fangos	80,12	80,12	80,12	80,12	
CCM nuevo			153,12	134,62	
Subcuadro edificio control	5,75	3,00	5 <i>,</i> 75	3,00	
Potencias totales	411,93	297,96	474,24	398,91	
Coeficiente de simultaneidad		0,85		0,85	
Total potencia simultanea		253,27		339,07	Kw
Potencia demandada en transform	ación	316,58		423,84	KVA
Coeficiente de mayoración		1,25		1,25	
Potencia demandada transformaci	ón	395,73		529,80	KVA
Potencia existente en transformaci	ón	630,00		630,00	KVA

ambling"

PROYECTO CONSTRUCTIVO

Reserva en transformación 49,75 32,72 %

5 Cálculos de baja tensión

5.1 Formulación empleada en el dimensionamiento

5.1.1 Intensidad de cálculo

Emplearemos las siguientes:

Sistema Trifásico

 $I = Pc / 1,732 \times U \times Cos_{\phi} \times R = amp (A)$

 $e = (L \times Pc / k \times U \times n \times S \times R) + (L \times Pc \times Xu \times Sen_{\phi} / 1000 \times U \times n \times R \times Cos_{\phi}) = voltios (V)$

Sistema Monofásico:

 $I = Pc / U \times Cos_{\phi} \times R = amp (A)$

e = $(2 \times L \times Pc / k \times U \times n \times S \times R) + (2 \times L \times Pc \times Xu \times Sen_{\phi} / 1000 \times U \times n \times R \times Cos_{\phi}) = voltios (V)$

En donde:

Pc = Potencia de cálculo en watios.

L = Longitud de cálculo en metros.

e = Caída de tensión en Voltios.

K = Conductividad.

I = Intensidad en amperios.

U = Tensión de servicio en voltios (Trifásica ó Monofásica).

S = Sección del conductor en mm².

Cos φ = Coseno de fi. Factor de potencia.

R = Rendimiento. (Para líneas motor).

 $n = N^o$ de conductores por fase.

Xu = Reactancia por unidad de longitud en mΩ/m.

5.1.2 Fórmula conductividad eléctrica

 $K = 1/\rho$

 $\rho = \rho_{20}[1+\alpha (T-20)]$

 $T = T_0 + [(T_{max}-T_0)(I/I_{max})^2]$

Siendo,

K = Conductividad del conductor a la temperatura T.

 ρ = Resistividad del conductor a la temperatura T.

 ρ_{20} = Resistividad del conductor a 20°C.

ambling"

PROYECTO CONSTRUCTIVO

Cu = 0.018

AI = 0.029

 α = Coeficiente de temperatura:

Cu = 0.00392

AI = 0.00403

T = Temperatura del conductor (°C).

 T_0 = Temperatura ambiente (°C):

Cables enterrados = 25°C

Cables al aire = 40° C

 T_{max} = Temperatura máxima admisible del conductor (°C):

XLPE, EPR = 90°C

 $PVC = 70^{\circ}C$

I = Intensidad prevista por el conductor (A).

 I_{max} = Intensidad máxima admisible del conductor (A).

5.1.3 Fórmulas sobrecargas

 $Ib \leq In \leq Iz$

 $I2 \le 1,45 Iz$

Donde:

Ib: intensidad utilizada en el circuito.

Iz: intensidad admisible de la canalización según la norma UNE 20-460/5-523.

In: intensidad nominal del dispositivo de protección. Para los dispositivos de protección regulables, In es la intensidad de regulación escogida.

- I2: intensidad que asegura efectivamente el funcionamiento del dispositivo de protección. En la práctica I2 se toma igual:
 - a la intensidad de funcionamiento en el tiempo convencional, para los interruptores automáticos (1,45 In como máximo).
 - a la intensidad de fusión en el tiempo convencional, para los fusibles (1,6 In).

5.1.4 Fórmulas compensación energía reactiva

 $\cos\emptyset = P/\sqrt{(P^2 + Q^2)}.$

tqØ = Q/P.

 $Qc = Px(tg\emptyset1-tg\emptyset2).$

 $C = Qcx1000/U^2x\omega$; (Monofásico - Trifásico conexión estrella).

 $C = Qcx1000/3xU^2x\omega$; (Trifásico conexión triángulo).

Siendo:

ambling"

PROYECTO CONSTRUCTIVO

P = Potencia activa instalación (kW).

Q = Potencia reactiva instalación (kVAr).

Qc = Potencia reactiva a compensar (kVAr).

Ø1 = Angulo de desfase de la instalación sin compensar.

Ø2 = Angulo de desfase que se quiere conseguir.

U = Tensión compuesta (V).

 $\omega = 2xPixf$; f = 50 Hz.

C = Capacidad condensadores (F); cx1000000(µF).

5.1.5 Fórmulas cortocircuito

* IpccI = Ct U / $\sqrt{3}$ Zt

Siendo,

IpccI: intensidad permanente de c.c. en inicio de línea en kA.

Ct: Coeficiente de tensión.

U: Tensión trifásica en V.

Zt: Impedancia total en mohm, aguas arriba del punto de c.c. (sin incluir la línea o circuito en estudio).

* IpccF = Ct $U_F / 2 Zt$

Siendo,

IpccF: Intensidad permanente de c.c. en fin de línea en kA.

Ct: Coeficiente de tensión.

UF: Tensión monofásica en V.

Zt: Impedancia total en mohm, incluyendo la propia de la línea o circuito (por tanto es igual a la impedancia en origen más la propia del conductor o línea).

* La impedancia total hasta el punto de cortocircuito será:

$$Zt = (Rt^2 + Xt^2)^{1/2}$$

Siendo,

Rt: $R_1 + R_2 + \dots + R_n$ (suma de las resistencias de las líneas aguas arriba hasta el punto de c.c.)

Xt: $X_1 + X_2 + \dots + X_n$ (suma de las reactancias de las líneas aguas arriba hasta el punto de c.c.)

$$R = L \cdot 1000 \cdot C_R / K \cdot S \cdot n \pmod{m}$$

$$X = Xu \cdot L / n \pmod{m}$$

R: Resistencia de la línea en mohm.

X: Reactancia de la línea en mohm.

ambling"

PROYECTO CONSTRUCTIVO

L: Longitud de la línea en m.

C_R: Coeficiente de resistividad.

K: Conductividad del metal.

S: Sección de la línea en mm².

Xu: Reactancia de la línea, en mohm por metro.

n: nº de conductores por fase.

* $tmcicc = Cc \cdot S^2 / IpccF^2$

Siendo, tmcicc: Tiempo máximo en sg que un conductor soporta una Ipcc.

Cc= Constante que depende de la naturaleza del conductor y de su aislamiento.

S: Sección de la línea en mm².

IpccF: Intensidad permanente de c.c. en fin de línea en A.

* tficc = cte. fusible / IpccF²

Siendo, tficc: tiempo de fusión de un fusible para una determinada intensidad de cortocircuito.

IpccF: Intensidad permanente de c.c. en fin de línea en A.

* Lmax = 0,8 U_F / 2 · I_{F5} · $\sqrt{(1,5 / \text{K} \cdot \text{S} \cdot \text{n})^2 + (\text{Xu} / \text{n} \cdot 1000)^2}$

Siendo: Lmax: Longitud máxima de conductor protegido a c.c. (m) (para protección por fusibles)

U_F: Tensión de fase (V)

K: Conductividad

S: Sección del conductor (mm2)

Xu: Reactancia por unidad de longitud (mohm/m). En conductores aislados suele ser 0,1.

n: no de conductores por fase

Ct= 0,8: Es el coeficiente de tensión.

 $C_R = 1,5$: Es el coeficiente de resistencia.

 I_{F5} = Intensidad de fusión en amperios de fusibles en 5 sg.

* Curvas válidas.(Para protección de Interruptores automáticos dotados de Relé electromagnético).

CURVA B IMAG = 5 In CURVA C IMAG = 10 In CURVA D Y MA IMAG = 20 In

ambling"

PROYECTO CONSTRUCTIVO

5.1.6 Fórmulas embarrados

Cálculo electrodinámico

 σ max = Ipcc² · L² / (60 · d · Wy · n)

Siendo, σmax: Tensión máxima en las pletinas (kg/cm²)

Ipcc: Intensidad permanente de c.c. (kA)

L: Separación entre apoyos (cm)

d: Separación entre pletinas (cm)

n: nº de pletinas por fase

Wy: Módulo resistente por pletina eje y-y (cm³)

σadm: Tensión admisible material (kg/cm²)

Comprobación por solicitación térmica en cortocircuito

Icccs = Kc · S / ($1000 \cdot \sqrt{\text{tcc}}$)

Siendo, Ipcc: Intensidad permanente de c.c. (kA)

Icccs: Intensidad de c.c. soportada por el conductor durante el tiempo de duración

del c.c. (kA)

S: Sección total de las pletinas (mm²)

tcc: Tiempo de duración del cortocircuito (s)

Kc: Constante del conductor: Cu = 164, Al = 107

1.1.1.1. Fórmulas Resistencia Tierra

Placa enterrada

$$Rt = 0.8 \cdot \rho / P$$

Siendo, Rt: Resistencia de tierra (Ohm)

ρ: Resistividad del terreno (Ohm·m)

P: Perímetro de la placa (m)

Pica vertical

$$Rt = \rho / L$$

Siendo, Rt: Resistencia de tierra (Ohm)

ρ: Resistividad del terreno (Ohm·m)

L: Longitud de la pica (m)

Conductor enterrado horizontalmente

Rt =
$$2 \cdot \rho / L$$

Siendo, Rt: Resistencia de tierra (Ohm)

ρ: Resistividad del terreno (Ohm·m)

ambling"

PROYECTO CONSTRUCTIVO

L: Longitud del conductor (m)

Asociación en paralelo de varios electrodos

Rt = 1 / (Lc/2 ρ + Lp/ ρ + P/0,8 ρ)

Siendo, Rt: Resistencia de tierra (Ohm)

ρ: Resistividad del terreno (Ohm·m)

Lc: Longitud total del conductor (m)

Lp: Longitud total de las picas (m)

P: Perímetro de las placas (m)

5.2 Demanda de potencia nuevo CCM

La demanda de potencias ya ha quedado reflejada en el apartado de la justificación de la potencia del transformador, y de los cuadros existentes, que resumidamente reproducimos aquí:

Bassatawa	A	ctual	Reforma		
Receptores	Instalada	Funcionando	Instalada	Funcionando	
CCM nº1 Pretratamiento y F-Q	130,07	83,15	61,16	54,08	
CCM nº2 Tratamiento biológico	193,79	129,49	171,89	124,89	
CCM nº3 Tratamiento de fangos	80,12	80,12	80,12	80,12	
CCM nº4 nuevo			153,12	134,62	
Subcuadro edificio control	5,75	3,00	5,75	3,00	
Potencias totales	409,73	295,76	472,04	396,71	

5.3 Cálculo de la acometida al nuevo CCM4

Demanda de potencia	CGBT a nuevo CCM4
Tensión nominal (voltios)	400
Potencia demandada (kw)	138,12
Motor de mayor potencia (kw)	16,00
Potencia de cálculo (kw)	142,12
Potencia considerada de cálculo (kw)	142,12
Factor de potencia	0,92
Intensidad de cálculo (amperios)	223,85
Caída de tensión aguas arriba (voltios)	3,29
Descripción del conductor:	
Designación	RZ1-K 0,6/1 kV
Material	Cu
Aislamiento	XLPE
Tipo	Unipolar
Método de instalación	D
Método de instalación	Enterrado
Temperatura terreno	25
Sección nominal (fase) mm²	150
Sección nominal (neutro) mm²	70

PROYECTO CONSTRUCTIVO

Conductores por fase	1
Conductores de neutro	1
Intensidad admisible (UNE-HD 60.364-5-52):	
Intensidad adm. de acuerdo a tabla 52-2bis (amperios)	260
Temperatura considerada para calculo (ºC)	25
Factor corrección temperatura según tabla 52-15	1,00
Factor corrección agrupamiento según tabla B 52-19	1,00
Intensidad máxima admisible (amperios)	260
Factor de carga conductor	86%
Caída de tensión máxima:	
Factor de potencia	0,92
Longitud (metros)	70,00
Temperatura conductor para calculo resistividad (ºC)	62,06
Caída de tensión aguas arriba	3,29
Caída de tensión (final de la línea) (voltios)	3,48
Caída de tensión acumulada (final de la línea) (V)	6,77
Caída de tensión acumulada (final de la línea) (V)	1,69%

ambling"

PROYECTO CONSTRUCTIVO

5.4 Cálculos de las líneas a receptores principales

Ud s ins tal	Uds func	Equipo	Tipo salida	Pot. kw	Factor potenc ia	Tensi on V	mm²	Ins tal ac.	Longitud m	I. nominal A	l. cálc. A	Conductor	Conduct or	l _{adm} 25/40º C	Factor correcc ion	I. corregi da A	Caida tensión parcial V	Caida tensión total %
1	1	Tamiz aliviadero	D+Lp	0,70	0,77	400	2,5	B2	18	1,31	1,64	RV-K 0,60/1kV	4x2,5	22,00	0,60	13,20	0,28	1,76%
2	2	Tamices de finos	D+Lp	2,20	0,81	400	2,5	В2	15	3,92	4,90	RV-K 0,60/1kV	4x2,5	22,00	0,60	13,20	0,74	1,88%
1	1	Tornillo compactador tamices	D+Lp	1,50	0,76	400	2,5	B2	15	2,85	3,56	RV-K 0,60/1kV	4x2,5	22,00	0,60	13,20	0,51	1,82%
1	1	Subcuadro puente	AC	3,00	0,82	400	4	В2	20	5,28	6,60	RV-K 0,60/1kV	5x4	30,00	0,60	18,00	0,84	1,90%
3	3	Aeroflotadores desarenador	D	0,65	0,77	400	2,5	B2	23	1,22	1,52	RV-K 0,60/1kV	4x2,5	22,00	0,60	13,20	0,34	1,78%
1	1	Clasificador de arenas	D+Lp	0,75	0,77	400	2,5	В2	24	1,41	1,76	RV-K 0,60/1kV	4x2,5	22,00	0,60	13,20	0,40	1,79%
1	1	Concentrador de grasas	D+Lp	0,25	0,70	400	2,5	В2	26	0,52	0,64	RV-K 0,60/1kV	4x2,5	22,00	0,60	13,20	0,15	1,73%
1	1	Compresor aire	D	2,20	0,81	400	2,5	B2	26	3,92	4,90	RV-K 0,60/1kV	4x2,5	22,00	0,60	13,20	1,29	2,01%
1	1	Desodorización pretratamiento	Arr	11,00	0,85	400	6	D	35	18,68	23,35	RV-K 0,60/1kV	4x6	44,00	0,65	28,60	3,61	2,59%
1	1	Subcuadro edificio pretratam.	AC	5,75	0,83	400	4	B2	6	5,00	6,25	RV-K 0,60/1kV	5x4	30,00	0,60	18,00	0,24	1,75%
2	1	Bombas recuperación tanque	VF	9,00	0,84	400	6	D	48	15,47	19,33	RVKV-K 0.6/1kV	4x6+P	44,00	0,65	28,60	4,05	2,70%
1	1	Reja fosas sépticas	D+Lp	0,55	0,77	400	2,5	D	45	1,03	1,29	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	0,56	1,83%
1	1	Tornillo compactador reja fosas	D+Lp	1,50	0,76	400	2,5	D	45	2,85	3,56	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	1,52	2,07%
1	1	Subcuadro cuchara fosas sépticas	AC	4,00	0,82	400	4	D	45	7,04	8,80	RV-K 0,60/1kV	5x4	35,00	0,65	22,75	2,53	2,32%
2	1	Bombas recuperación fosas	D	1,30	0,75	400	2,5	D	48	2,50	3,13	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	1,40	2,04%
1	1	Bomba aireación fosas sénticas	D	2,20	0,81	400	2,5	D	50	3,92	4,90	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	2,47	2,31%
1	1	Compuerta regulación caudal F-O	Inv	0,16	0,56	400	2,5	D	75	0,41	0,52	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	0,27	1,76%
1	1	Compuerta regulación caudal	Inv	0,16	0,56	400	2,5	D	75	0,41	0,52	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	0,27	1,76%
1	1	Decantador secundario	D+Lp	0,55	0,77	400	2,5	D	80	1,03	1,29	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	0,99	1,94%
2	1	Bombas de recirculacionL3	VF	3,00	0,82	400	2,5	D	70	5,28	6,60	RVKV-K 0.6/1kV	4x2,5+P	27,00	0,65	17,55	4,72	2,87%
2	1	Bombas de excesoL3	D	1,30	0,75	400	2,5	D	70	2,50	3,13	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	2,05	2,20%

PROYECTO CONSTRUCTIVO

Ud s ins tal	Uds func	Equipo	Tipo salida	Pot. kw	Factor potenc ia	Tensi on V	mm²	Ins tal ac.	Longitud m	I. nominal A	l. cálc. A	Conductor	Conduct or	l _{adm} 25/40º C	Factor correcc ion	I. corregi da A	Caida tensión parcial V	Caida tensión total %
2	1	Bombas de flotantes L3	D	1,30	0,75	400	2,5	D	70	2,50	3,13	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	2,05	2,20%
1	1	Mecanismo espesador fangos	D+Lp	0,25	0,70	400	2,5	D	60	0,52	0,64	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	0,34	1,78%
1	1	Desodorización espesador	Arr	9,00	0,84	400	6	D	75	15,47	19,33	RV-K 0,60/1kV	4x6	44,00	0,65	28,60	6,32	3,27%
2	2	Aireadores digestores L1	Arr	16,00	0,85	400	10	D	50	27,17	33,96	RV-K 0,60/1kV	4x10	58,00	0,65	37,70	4,49	2,82%
2	2	Aireadores digestores L2	Arr	16,00	0,85	400	10	D	60	27,17	33,96	RV-K 0,60/1kV	4x10	58,00	0,65	37,70	5,39	3,04%
2	1	Bombas fangos digeridos L1	D	1,30	0,75	400	2,5	D	55	2,50	3,13	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	1,61	2,09%
2	1	Bombas fangos digeridos L2	D	1,30	0,75	400	2,5	D	60	2,50	3,13	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	1,75	2,13%
1	1	Subcuadro edificio taller	AC	5,75	0,83	400	10	D	95	10,00	12,50	RV-K 0,60/1kV	5x10	58,00	0,65	37,70	3,07	2,46%
2	2	Agitadores biológico*	D	2,90	0,81	400	2,5	D	50	5,17	6,46	RV-K 0,60/1kV	4x2,5	27,00	0,65	17,55	3,26	2,51%
2	2	Bombas recirculacion interna*	VF	3,00	0,82	400	2,5	D	45	5,28	6,60	RVKV-K 0.6/1kV	4x2,5+P	27,00	0,65	17,55	3,03	2,45%
1	1	Soplante de aireación*	VF	45,00	0,95	400	70	В2	15	68,37	85,47	RVKV-K 0.6/1kV	4x70+P	178,00	0,60	106,80	0,54	1,83%

^{*} Motores a instalar en CCM de soplantes

Tipo salida

Alimentación cuadro Arranque directo

D+Lp Arranque directo + limitador par

Arrancador

Inv Inversor

Variador de frecuencia

ambling"

PROYECTO CONSTRUCTIVO

5.5 Líneas a otros receptores

Para el cableado a los distintos sensores, boyas, y equipos de campo se han previsto los siguientes tipos de cable y las siguientes longitudes:

Uds instaladas	Equipo	Tipo equipo	Tensión V	Nº Conductores	Conductor alimentación	Conductor señal 4-20 mA	Longitud unit. m
1,00	Sonda nivel máximo arqueta llegada	В	-	3x	3x1,50	ı	30
1,00	Medidor caudal vertedero rebose aliviadero llegada	S	24	-		2x1.50 mm ² +P	18
1,00	Medidor pH entrada	S	230	3x	3x1,50	2x1.50 mm ² +P	18
1,00	Medidor conductividad entrada	S	230	3x	3x1,50	2x1.50 mm ² +P	18
1,00	Hidronivel tamiz aliviadero	В	-	3x	3x1,50		15
2,00	Hidronivel tamices	В	-	3x	3x1,50		15
1,00	Hidronivel reja manual desbaste	В	-	3x	3x1,50		15
2,00	Electroválvula agua limpieza tamices	Ev	24	3x	3x1,50		15
1,00	Electroválvula agua canal grasas	Ev	24	3x	3x1,50		25
1,00	Sonda de nivel mínimo aireadores desarenado	В	-	3x	3x1,50		18
1,00	Retorno señales cuadro desarenado	CC	-	8x	8x1,50		45
1,00	Medidor caudal vertedero rebose a tanque laminación	S	24	-		2x1.50 mm ² +P	30
1,00	Electroválvula válvula PIC grasas	Ev	24	3x	3x1,50		25
1,00	Retorno señales cuadro basculante	CC	-	8x	8x1,50		65
1,00	Medidor nivel continuo t. laminación	S	24	-		2x1.50 mm ² +P	40
3,00	Sondas nivel bombas recuperación tanque	В	-	3x	3x1,50		40
1,00	Caudalímetro Ø 200 bombeo recuperación tanque	С	230	3x	3x1,50	4x1.50 mm ² +P	40
1,00	Medidor caudal vertedero rebose del tanque laminación	S	24	-		2x1.50 mm ² +P	40
1,00	Hidronivel reja auto. fosas sépticas	В	-	3x	3x1,50		42
1,00	Hidronivel reja manual fosas sépticas	В	-	3x	3x1,50		42
1,00	Electroválvula agua limpieza reja fosas sépticas	Ev	24	3x	3x1,50		42
3,00	Sondas nivel bombas reincorporación fosas	В	-	3x	3x1,50		48
1,00	Caudalímetro Ø 80 bombeo reincorporación fosas	С	230	3x	3x1,50	4x1.50 mm ² +P	48
1,00	Medidor nivel continuo deposito fosas sépticas	S	24	-		2x1.50 mm ² +P	48
1,00	Servomotor vertedero a F-Q (finales carrera y par)	CC	-	8x	8x1,50		70
1,00	Servomotor vertedero a F-Q (señal 4-20mA)	S	-	-		2x1.50 mm ² +P	70
1,00	Servomotor vertedero a biológico (finales carrera y pa)	CC	-	8x	8x1,50		70
1,00	Servomotor vertedero a biológico (señal 4-20mA)	S	-	-		2x1.50 mm ² +P	70
1,00	Caudalímetro Ø 400 a Fisico-Quimico	С	230	3x	3x1,50	4x1.50 mm ² +P	65
1,00	Caudalímetro Ø 500 a trat. biologico	С	230	3x	3x1,50	4x1.50 mm ² +P	105
1,00	Sonda nivel mínimo bomba rec interna L1	В	-	3x	3x1,50		65
1,00	Sonda nivel mínimo bomba rec interna L2	В	-	3x	3x1,50		65
1,00	Medidor O2 anoxia L1 *	S	230	3x	3x1,50	2x1.50 mm ² +P	50
1,00	Medidor O2 anoxia L2 *	S	230	3x	3x1,50	2x1.50 mm ² +P	65
1,00	Medidor O2 óxica L1 *	S	230	3x	3x1,50	2x1.50 mm ² +P	35
1,00	Medidor O2 óxica L2 *	S	230	3x	3x1,50	2x1.50 mm ² +P	45
1,00	Medidor Redox anoxia L1 *	S	230	3x	3x1,50	2x1.50 mm ² +P	50

ambling"

PROYECTO CONSTRUCTIVO

Uds instaladas	Equipo	Tipo equipo	Tensión V	Nº Conductores	Conductor alimentación	Conductor señal 4-20 mA	Longitud unit. m
1,00	Medidor Redox anoxia L2 *	S	230	3x	3x1,50	2x1.50 mm ² +P	65
1,00	Medidor solidos zona óxica L1 *	S	230	3x	3x1,50	2x1.50 mm ² +P	35
1,00	Medidor solidos zona óxica L2 *	S	230	3x	3x1,50	2x1.50 mm ² +P	45
1,00	Medidor nitratos zona óxica L1 *	S	230	3x	3x1,50	2x1.50 mm ² +P	35
1,00	Medidor nitratos zona óxica L2 *	S	230	3x	3x1,50	2x1.50 mm ² +P	45
1,00	Señales panel soplante Aerzen *	CC	-	8x	8x1,50		10
2,00	Medidores caudal masico aire a biológico *	S	24	-		2x1.50 mm ² +P	10
1,00	Modulo humedad-ºC bombas agitador anoxia L1 *	CC	-	4x	4x1,50		50
1,00	Modulo humedad-ºC bombas agitador anoxia L2 *	CC	-	4x	4x1,50		65
1,00	Modulo humedad-ºC bombas rec interna L1 *	CC	-	4x	4x1,50		45
1,00	Modulo humedad-ºC bombas rec interna L2 *	CC	-	4x	4x1,50		55
1,00	Sonda nivel mínimo bombeo fangos Dec 2º L3	В	-	3x	3x1,50		65
3,00	Sondas nivel bombas flotantes Dec 2º L3	В	-	3x	3x1,50		65
1,00	Electroválvula válvula PIC Dec 2º L3	Ev	24	3x	3x1,50		70
1,00	Caudalímetro Ø 250 agua a regantes	С	230	3x	3x1,50	4x1.50 mm ² +P	115
1,00	Medidor caudal vertedero salida cloración	S	24	-		2x1.50 mm ² +P	115
1,00	Caudalímetro Ø 200 recirculacion externa L3	С	230	3x	3x1,50	4x1.50 mm ² +P	65
1,00	Caudalímetro Ø 80 purga fangos Dec 2º L3	С	230	3x	3x1,50	4x1.50 mm ² +P	65
1,00	Caudalímetro Ø 80 entrada fango a digestores	С	230	3x	3x1,50	4x1.50 mm ² +P	70
1,00	Caudalímetro Ø 80 entrada fango a espesador	С	230	3x	3x1,50	4x1.50 mm ² +P	55
3,00	Sondas nivel bombas fango digerido L1	В	-	3x	3x1,50		55
3,00	Sondas nivel bombas fango digerido L2	В	-	3x	3x1,50		60
2,00	Modulo humedad -ºC aireadores digestor L1	CC	-	4x	4x1,50		50
2,00	Modulo humedad- ºC aireadores digestor L2	СС	-	4x	4x1,50		60
2,00	Modulo humedad-ºC bombas fango digerido L1	СС	-	4x	4x1,50		55
2,00	Modulo humedad-ºC bombas fango digerido L2	CC	-	4x	4x1,50		60
2,00	Modulo humedad-ºC bombas fango exceso L3	CC	-	4x	4x1,50		70
2,00	Modulo humedad-ºC bombas flotantes L3	CC	-	4x	4x1,50		70
2,00	Modulo humedad-ºC bombas rec externa L3	CC	-	4x	4x1,50		70
2,00	Modulo H-ºC bombas reincorporación tanque	CC	-	4x	4x1,50		48
2,00	Modulo H-ºC bombas reincorporación fosas	СС	-	4x	4x1,50		48
1,00	Modulo humedad-ºC bomba aireación fosas	СС	-	4x	4x1,50		50
1,00	Medidor nivel continuo en digestor L1	S	24	-		2x1.50 mm ² +P	40
1,00	Medidor nivel continuo en digestor L2	S	24	-		2x1.50 mm ² +P	50
1,00	Medidor oxigeno en digestor 1	S	230	3x	3x1,50	2x1.50 mm ² +P	50
1,00	Medidor oxigeno en digestor 2	S	230	3x	3x1,50	2x1.50 mm ² +P	60
1,00	Sensor H2S en desodorización espesador	S	24			2x1.50 mm ² +P	60
1,00	Sensor H2S en desodorización pretratamiento	S	24			2x1.50 mm ² +P	35
1,00	Secador frigorífico	Α	230	3x	3x2,50		25
1,00	Ventilador sala cuadros	Α	230	3x	3x2,50		10
1,00	Ventilador sala soplantes	Α	230	3x	3x2,50		15

ambling"

PROYECTO CONSTRUCTIVO

Uds instaladas	Equipo	Tipo equipo	Tensión V	Nº Conductores	Conductor alimentación	Conductor señal 4-20 mA	Longitud unit. m
1,00	Subcuadro basculantes	Α	230	3x	3x2,50		60

^{*}Equipos instalados en CCM nº2 edificio de soplantes

Tipo equipo

- B Boya/Hidronivel
- C Caudalímetro con salida pulsos
- S Sensor 4-20 mA
- EV Electroválvula
- CC Cableado de contactos
- A Alimentación

Para el cableado a las botoneras se han previsto las siguientes longitudes:

Uds instaladas	Equipo	Longitud m	Cableado Botoneras
1	Tamiz aliviadero	18	3x1.50
2	Tamices de de finos	15	3x1.50
1	Tornillo compactador tamices	15	3x1.50
3	Aeroflotadores desarenador	23	3x1.50
1	Clasificador de arenas	24	3x1.50
1	Concentrador de grasas	26	3x1.50
1	Compresor aire	26	3x1.50
1	Desodorización pretratamiento	35	3x1.50
2	Bombas recuperación tanque	48	3x1.50
1	Reja fosas sépticas	45	3x1.50
1	Tornillo compactador reja fosas	45	3x1.50
2	Bombas recuperación fosas	48	3x1.50
1	Bomba aireación fosas sépticas	50	3x1.50
1	Compuerta regulación caudal F-Q	75	5x1.50
1	Compuerta regulación caudal biológico	75	5x1.50
1	Decantador secundario	80	3x1.50
2	Bombas de recirculacion L3	70	3x1.50
2	Bombas de exceso L3	70	3x1.50
2	Bombas de flotantes L3	70	3x1.50
1	Mecanismo espesador fangos	60	3x1.50
1	Desodorización espesador	75	3x1.50
2	Aireadores digestores L1	50	3x1.50
2	Aireadores digestores L2	60	3x1.50
2	Bombas fangos digeridos L1	55	3x1.50
2	Bombas fangos digeridos L2	60	3x1.50
2	Agitadores biológico*	50	3x1.50
2	Bombas recirculacion interna*	45	3x1.50
1	Soplante de aireación*	15	3x1.50

PROYECTO CONSTRUCTIVO

5.6 Corrección del factor de potencia

Se ha previsto realizar la compensación de reactiva en el nuevo CCM, el dimensionamiento realizado es el siguiente:

Potencia eléctrica sin reservas	138,12	Kw
Potencia de equipos con variador	24,00	Kw
Potencia a compensar	114,12	Kw
Tensión de servicio	400	V
Intensidad de cálculo	193,79	Α
Factor de potencia sin compensar	0,85	
Factor potencia deseado	0,98	
Energía activa	114,12	kw
Energía reactiva	70,73	Kw
Potencia necesaria batería	47,55	kvar
Potencia adoptada batería	50,00	kvar

El cálculo de la línea de alimentación a la batería es el siguiente:

Información inicial:

Tensión nominal	400	Voltios
Potencia de cálculo	50,00	Kvar
Intensidad	72,25	Amperios
Mayoración de intensidad máxima protección y línea	1,50	
Intensidad de calculo	108,38	Amperios
Caída de tensión aguas arriba	3,29	voltios

Descripción del conductor:

Designacion	RV-K 0,6/1 kV		
Material	Cu		
Aislamiento	XLPE		
Tipo	Multipolar		
Método de instalación	E		
Método de instalación	Bandeja perforada o rejilla		
Temperatura ambiente	40ºC		
Sección nominal (fase)	25 mm²		
Sección nominal (neutro)	- mm²		
Conductores por fase	1		
Conductores neutro	-		

Intensidad admisible (UNE-HD 60.364-5-52):

Intensidad admisible de acuerdo a tabla 52-1bis	115	amperios
Temperatura considerada cálculo	40	ōC
Factor corrección temperatura según tabla 52-14	1,00	
Agrupamiento con otros conductos	No	
Factor corrección agrupamiento con otros conductos	1,00	

PROYECTO CONSTRUCTIVO

Numero de circuitos en la canalización Factor corrección agrupamiento según tabla 52-3 Intensidad máxima admisible Factor de carga conductor	1,00 1 115 94%	amperios
Caída de tensión máxima: Factor de potencia Longitud	0,95 6,00	metros
Temperatura conductor para calculo resistividad Caída de tensión (final de la línea) Caída de tensión acumulada (final de la línea) Caída de tensión acumulada (final de la línea)	84,41 0,96 4,26 1,06%	ºC Voltios Voltios

5.7 Cálculo de la puesta a tierra

Se ha dimensionado una nueva puesta a tierra de las masas que se alojará en la zanja prevista para las canalizaciones eléctricas, se pondrán a tierra las armaduras de los nuevos recintos a construir.

Tomas de tierra.

Para la toma de tierra se han utilizado picas de acero cobreado de 2 metros de longitud y un anillo de conductor de cobre desnudo de 35 mm² enterrado a una profundidad de 0,80 metros.

Se realizará la puesta a tierra de todas las masas de la instalación, incluidas armaduras de recintos, tuberías, equipos mecánicos, etc.

Líneas principales de tierra.

Las líneas principales de tierra estarán formadas por conductores que partirán de los puntos de puesta a tierra, y a las cuales se conectarán las derivaciones necesarias para la puesta a tierra de las masas, a través de conductores de protección.

Las especificaciones de material y aislamiento serán las mismas que para el resto de los conductores de la instalación.

Los diferentes circuitos de puesta a tierra a instalar son:

Tierra para el alumbrado exterior, que consistirá en:

- 7 picas de acero-cobreado Φ14,6 mm y 2 metros de longitud.
- 310 ml cable unipolar de cobre aislado de 16 mm² enterrado en zanja.

Tierra para BT. La red de tierras para cuadros eléctricos constará de los siguientes elementos:

- 8 picas de acero-cobreado Φ14,6 mm y 2 metros de longitud.
- 383 ml de cable de cobre desnudo de 35 mm² de sección.
- Latiguillos de cable de cobre desnudo de 35 mm² de sección para conexión de las armaduras de los recintos.

El cálculo de la resistencia a tierra, dependiendo del tipo de electrodo, se puede realizar aproximadamente a partir de la siguiente tabla:

Tipo de electrodo Resistencia a tierra (Ω)

Placa enterrada $R_0 = 0.8 \frac{\rho}{P}$

amblina"

PROYECTO CONSTRUCTIVO

Pica vertical

$$R_1 = \frac{\rho}{L_1}$$

Conductor enterrado horizontalmente

$$R_1 = \frac{\rho}{L_1}$$

$$R_2 = 2\frac{\rho}{L_2}$$

Siendo:

ρ: resistividad del terreno en Ω*m.

P: perímetro de la placa en metros.

L₁: longitud de la pica en metros.

L2: longitud del conductor en metros.

La resistencia equivalente de dos resistencias en paralelo es:

$$R_{eq} = \frac{R_1 * R_2}{R_1 + R_2}$$

La tensión a que estarán sometidas las masas metálicas en caso de defecto será:

$$U_d = I_s * R_{eq}$$

Dónde:

U_d: tensión en voltios.

Is: intensidad máxima de defecto a tierra o sensibilidad de disparo de la protección diferencial, en amperios

REQ: resistencia equivalente de la red de tierras en ohmios.

Aplicando para una sensibilidad de 300 mA las fórmulas anteriores, y una resistividad del terreno de 300 Ωm resulta una resistencia a tierra de 1,46 voltios y una tensión de contacto de 0,44 voltios

Como se puede comprobar, estas tensiones (U_d) son perfectamente admisibles y no constituyen peligro alguno para las personas.

5.8 Estudio de seguridad frente al riesgo causado por la acción del rayo

La selección de un nivel de protección adecuado para la colocación de una IEPR (Instalación Exterior de Protección contra el Rayo) en un lugar, se basa en la frecuencia esperada de impacto de rayo, Ne, prevista sobre la estructura o la zona a proteger, y en el riesgo admisible, Na, establecido para esta zona.

Para calcular estos parámetros se necesita conocer los siguientes datos:

- √ Superficie de captura equivalente
- ✓ Zona de España donde se encuentra el recinto a proteger
- √ Situación relativa de la estructura
- √ Material de la estructura en general
- √ Material del tejado del edificio
- √ Contenido del área a proteger
- ✓ Ocupación del área a proteger
- √ Consecuencia sobre el entorno

PROYECTO CONSTRUCTIVO

Según el CTE RD 31-4/2006 las expresiones utilizadas para el cálculo de Ne y Na son respectivamente:

Ne: Frecuencia esperada de impactos directos sobre una estructura, expresada en impactos por año, calculada con la siguiente fórmula:

Ne = Ng x Ae x C1 x 10^{-6} , siendo:

- Ng: Densidad de impacto de rayo sobre el terreno, expresada en número de rayos por Km² y por año.
- Ae: Superficie de captura equivalente de la estructura aislada, expresada en metros cuadrados y calculada con la siguiente fórmula Ae =L x I+6 x H x (L+I) + 9 x PI x H² (Altura del edificio, H, largo, L y ancho I)
- C1: Coeficiente relacionado el entorno

Na: Riesgo admisible de impactos sobre la estructura, expresado en impactos por año, calculada con la siguiente fórmula:

Na = $(5.5 \times 10^{-3}) / (C2 \times C3 \times C4 \times C5)$, siendo:

- Coeficiente en función del tipo de construcción, C2.
- Coeficiente en función del contenido del edificio, C3.
- Coeficiente en función del uso del edificio, C4.
- Coeficiente en función de la necesidad de continuidad en las actividades que se desarrollan en el edificio, C5.

Aplicando los datos anteriores según indica el CTE RD 31-4/2006 a las ecuaciones nombradas obtenemos los siguientes resultados:

FRECUENCIA ESPERADA DE IMPACTOS	
Coeficiente relacionado con el entorno C1	
Próximo a otros edificios o arboles de la misma altura o más alto	S
Coeficiente C1	0,500
Densidad de impactos (nº impactos/año, Km²)	2,00
<u>Cálculo del área de la superficie de captura</u>	
<u>equivalente</u>	
Lado del edificio (m)	8,80
Longitud edificio (m)	19,40
Altura del edificio (m)	6,80
Área de captura equivalente (m²)	2.629
Frecuencia esperada de impactos (Ne)	0,00263

RIESGO ADMISIBLE	
Coeficiente en función del tipo de construcción C2	
Tipo de estructura	Estructura hormigón
Tipo de cubierta	Cubierta hormigón
Coeficiente C2	1,00
Coeficiente en función del contenido del edificio C3	
Contenido edificio	Otros contenidos
Coeficiente C3	1,00

ambling"

PROYECTO CONSTRUCTIVO

Coeficiente en función del uso del edificio C4

Uso del edificio Resto edificios
Coeficiente C4 1,00

Coeficiente en función de la necesidad del edificio

C5

Tipo edificio Resto de edificios Coeficiente C5 1,00

Riesgo admisible (Na)

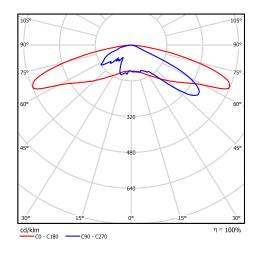
0,0055

Frecuencia esperada menor que riesgo admisible NO ES NECESARIO UN SISTEMA DE PROTECCION FRENTE AL RAYO

ambling"

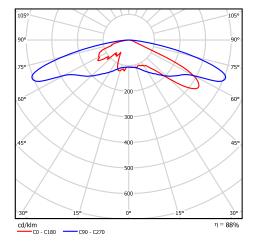
PROYECTO CONSTRUCTIVO

6 Cálculos luminotécnicos


6.1 Alumbrado exterior

El alumbrado viario exterior proyectado consta de 15 luminarias led de 57 watios sobre columna de 8,00 metros con un flujo luminoso de 6,074 lm y 5 luminarias led de 21 watios sobre brazo mural instaladas en las fachadas de los edificios con un flujo luminoso de 2,613 lm. La potencia total instalada es de 960 watios con un flujo total luminoso de 104.175 lm, con un rendimiento lumínico global de 108,5 lm/w.

El alumbrado exterior de la nueva EDAR cumple con las especificaciones del Reglamento de eficiencia energética en instalaciones de alumbrado exterior (RD 1890/2008) y sus Instrucciones técnicas complementarias (EA-01 a EA-07). Se ha proyectado como áreas de tránsito general en lugares de trabajo/ puestos al aire libre y para superficies de tránsito de vehículos lentos (max. 10 km/h) lo que hace que la intensidad lumínica necesaria sea de 10 lm con un coeficiente de uniformidad de 0,40.

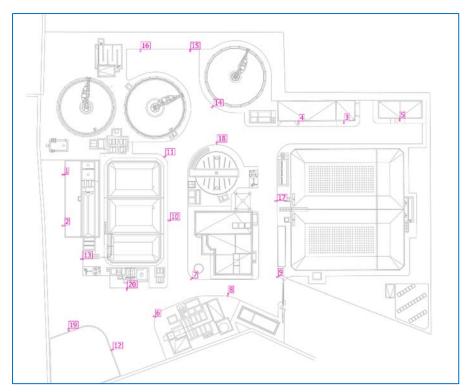

En el presente estudio el nivel medio de iluminancia logrado es de 16,90 lux con un coeficiente de uniformidad de 0.41.

Las características y la distribución lumínica de las luminarias utilizadas son:

SCHREDER AXIA 2.1 - 5167

Flujo luminoso (Luminaria): 6074 lm Flujo luminoso (Lámparas): 6074 lm Potencia de las luminarias: 57.0 W Clasificación luminarias según CIE: 100

SCHREDER 383332 AXIA 2.1


Flujo luminoso (Luminaria): 2613 lm Flujo luminoso (Lámparas): 2957 lm Potencia de las luminarias: 21.0 W Clasificación luminarias según CIE: 100

ambling"

PROYECTO CONSTRUCTIVO

Se ha modelizado el alumbrado en el programa DIALUX y la composición de la escena exterior con la distribución luminosa es la siguiente:

Disposición de luminarias.

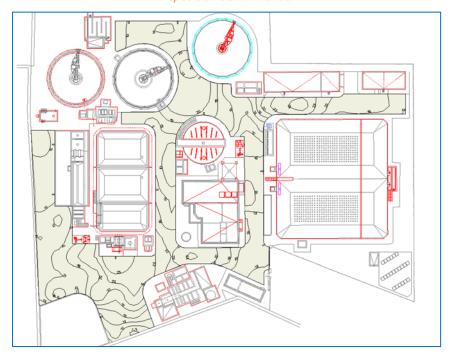


Gráfico de isolíneas.

ambling"

PROYECTO CONSTRUCTIVO

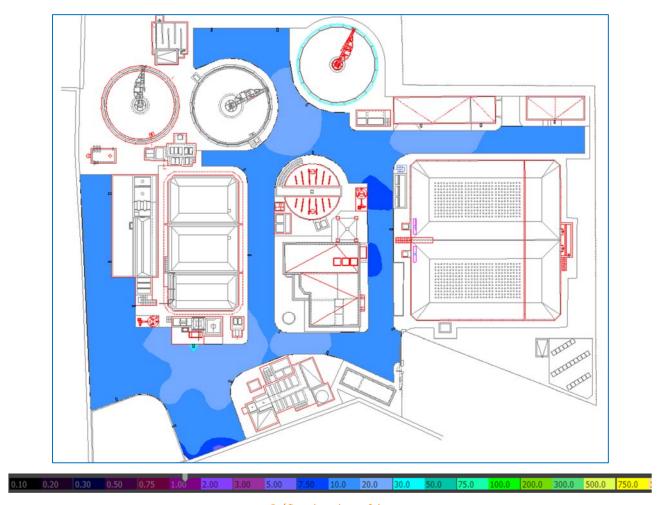


Gráfico de colores falsos

6.2 Alumbrado interior

A continuación se calcula la iluminación de cada uno de los edificios de la E.D.A.R. con el fin de dar cumplimiento a los niveles mínimos a mantener relacionados en el siguiente cuadro. Estos valores son acordes a los que marca el Instituto Nacional de Seguridad e Higiene en el trabajo:

Tipo de local	Iluminancias (lux)
Laboratorio, sala control y despachos	500
Taller y zonas de trabajo manual	300
Almacén, pasillo, hall, zona social, servicios	150
Vestuarios	150
Sala de máquinas	350

Los flujos luminosos por watio considerados para las distintas lamparas han sido:

•	Proyectores led	120	lm/w
•	Campanas led	135	lm/w
•	Plafones led	80	lm/w
•	Pantalla lineal led	80	lm/w

Los factores de conservacion que se han empleado estan entre 0,5 y 0,8 y los rendimientos de iluminacion entre 0,6 y 0,8.

ambling"

PROYECTO CONSTRUCTIVO

6.2.1 Cálculo de las luminarias

Designación local	m²	Lux Flujo necesario		Tipo Luminaria	Potencia necesaria	Potencia lampara	Nº Uds neces.	Nº Uds adopt.		
EDIFICIO DE PRETRA	EDIFICIO DE PRETRATAMIENTO									
Sala de desbaste	147,98	300	73.990,00	Campana led	548,07	100	5, 4 8	6 x 100		
Sala de cuadros	7,82	300	3.910,00	Pant. lineal led	48,88	70	0,70	1 x 70		
EDIFICIO TALLER-AL	EDIFICIO TALLER-ALMACEN									
Taller-almacén	26,24	300	13.120,00	Pant. lineal led	164,00	70	2,34	2 x 70		
Almacén eléctrico	16,40	300	8.200,00	Pant. lineal led	102,50	70	1,46	2 x 70		
REFORMADO SALA DE SOPLANTES										
Sala de soplantes	31,92	300	15.960,00	Campana led	118,22	100	1,18	2 x 100		
REFORMADO EDIFIC	REFORMADO EDIFICIO DE CONTROL									
Sala control	20,75	500	17.291,67	Plafón led	216,15	48	4,50	5 x 48		
Sala cuadros	20,58	300	10.290,00	Plafón led	128,63	48	2,68	4 x 48		
Laboratorio	9,18	300	4.590,00	Plafón led	57,38	24	2,39	2 x 24		
Aseos y vestuarios	9,17	150	2.292,50	Plafón led	28,66	18	1,59	3 x 18		
Comedor	6,14	300	3.070,00	Plafón led	38,38	24	1,60	2 x 24		
Lavandería	2,40	150	600,00	Plafón led	7,50	18	0,42	1 x 18		

6.2.2 Cálculo de las emergencias

Designación local	m²	Lux	Flujo necesario	Tipo Luminaria	Lúmenes Iuminaria Im	Nº Uds neces.	Nº Uds adopt.		
EDIFICIO DE PRETRA	TAMIENT)							
Sala de desbaste	147,98	5	740	Estanca IP65	350	2,11	4 x 350		
Sala de cuadros	7,82	5	39	Estanca IP65	110	0,36	1 x 110		
EDIFICIO TALLER-AL	MACEN								
Taller-almacén	26,24	5	131	Estanca IP65	110	1,19	1 x 110		
Almacén eléctrico	16,40	5	82	Estanca IP65	110	0,75	1 x 110		
REFORMADO SALA DI	REFORMADO SALA DE SOPLANTES								
Sala soplantes	31,92	5	160	Estanca IP65	200	0,80	1 x 200		
REFORMADO EDIFICIO DE CONTROL									
Sala control	20,75	5	104	Normal IP42	110	0,94	1 x 110		
Sala cuadros	20,58	5	103	Normal IP42	110	0,94	1 x 110		
Laboratorio	9,18	5	46	Normal IP42	60	0,77	1 x 60		
Aseos y vestuarios	9,17	5	46	Normal IP42	60	0,76	1 x 60		
Comedor	6,14	5	31	Normal IP42	60	0,51	1 x 60		
Lavandería	2,40	5	12	Estanca IP65	60	0,20	1 x 60		