REDACCIÓ DEL PROJECTE D'AMPLIACIÓ I MILLORA DEL TRACTAMENT A L'EDAR DE FORMENTERA. PROYECTO CONSTRUCTIVO.

Anejo nº10. Cálculos hidráulicos

REDACCIÓ DEL PROJECTE D'AMPLIACIÓ I MILLORA DEL TRACTAMENT A L'EDAR DE FORMENTERA.

EXPEDIENT DE CONTRACTACIÓ NÚM: SE/2020/20

PROYECTO CONSTRUCTIVO.

Indice

1 In	troducción y objeto	3		
	2 Cálculo hidráulico del emisario de salida			
	álculo hidráulico EDAR			
	Tabla resumen de cotas principales			
3.2	Cálculo de la línea piezométrica	5		
3.3	Cálculos de los bombeos	16		
4 Fo	ormulación empleada en el cálculo	23		

PROYECTO CONSTRUCTIVO.

1 Introducción y objeto

Se incluyen en este anejo todos los cálculos hidráulicos que comprende la realización del Proyecto de ampliación y mejora del tratamiento de la EDAR de Formentera.

2 Cálculo hidráulico del emisario de salida

Uno de los valores límites de para determinar la capacidad máxima de tratamiento de la EDAR de Formentera es la capacidad de transporte del emisario actual. Por ello se ha realizado una comprobación de la capacidad de transporte del mismo.

La siguiente información se ha extraído del proyecto de la mejora de la red de saneamiento de Formentera de 2018

Los caudales con los que se calcula el emisario en el anejo de cálculos hidráulicos del citado proyecto de la mejora de la red de saneamiento son los siguientes:

Λ = -	Temp	orada baja	Tempo	rada alta
Año	l/sg	m³/h	l/sg	m³/h
2.017	7,97	28,69	34,99*	125,96
2.026	61,13	220,06	147,25	530,1
2.042	93,81	337,71	177,4	638,64

^{*} Caudal de 2017 aportado por ABAQUA que corresponde con el caudal de temporada alta

Los valores de caudales de 2.026 y de 2.042 son valores estimativos adoptados por el proyectista en base a la NNSS.

A continuación, calculamos el caudal máximo que puede transportar el emisario.

El emisario está compuesto por dos tramos uno marino y otro terrestre, de las siguientes características:

	Ø	L	material	Ø interior	Rugosidad (mm)
Emisario marino	400	800	FC	365,2	1,00
Emisario terrestre	500	3.200	PEAD	440,6	0,30

Para el cálculo de las pérdidas de carga singulares se adoptan:

Caso de pérdida de carga	Uds	K	K total
Salida EDAR (embocadura)	1	0,5	0,5
Derivación	1	1,8	1,8
Transición 500 a 400 mm	1	0,6	0,6
Codos emisario terrestre (Tramo 1)	3	0,4	1,2
Codos emisario terrestre (Tramo 2)	20	0,4	8
Total suma de K emisario terrestre			12,10
Pérdidas singulares emisario marino			3,00

Vemos ahora la carga disponible que tiene en emisario

Cota rasante colector de salida en la EDAR 14,50 msnm Nivel pleamar 0,50 m

PROYECTO CONSTRUCTIVO.

Pérdidas en la descarga por diferencia de densidad	0,54	m
Carga disponible	13,46	m

Por seguridad adoptamos 13.00 metros

Calculamos ahora el caudal que consume esta carga disponible:

Pérdidas singulares emisario terrestre (suma de las K)

Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K	
1	440,6	520	1,048	12,1	0,554

Pérdida de carga continua en tubería emisario terrestre

Longitud (m)	Ø (mm)	Caudal a buscar (m³/h)	Caudal (m³/h)	Perdida (m/km)	
3.200	440,6	520,00	520,00	1,982	
	Rugosidad	Viscosidad			
V (m/sg)	(mm)	cinemática	_		
0,947	0,30	1,31E-06			6,342
Pérdidas sin	gulares emisar	io submarino			
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К	
1	365,2	520,00	1,379	3,00	0,291

Pérdida de carga continua en tubería a presión emisario submarino.

Longitud (m)	Ø (mm)	Caudal a buscar (m³/h)	Caudal (m³/h)	Perdida (m/km)	
800	365,2	520,00	520,00	6,865	
V (m/sg)	Rugosidad (mm)	Viscosidad cinemática	_		
1,379	1,00	1,31E-06			5,49
		Pérdidas totales			12,679

El caudal máximo que puede transportar el emisario agotando la carga disponible está en torno a los 500- 530 m^3/h .

3 Cálculo hidráulico EDAR

3.1 Tabla resumen de cotas principales

Elemento	Agua	Coronación	Solera	Terreno	Elevación	Excavación
Cámara de cloración	17,51	17,70	14,95	16,85	0,85	1,90
Decantador	17,91	18,35	13,15	17,15	1,20	4,00
Arqueta reparto dec2ª	18,37	19,15	16,05	17,30	1,85	1,25
Reactor biológico	18,66	19,06	13,26	17,30	1,76	4,04
Decantador F-Q	19,12	19,80	14,64	17,31	2,49	2,67
Mezcla F-Q	19,35	19,80	17,90	17,31	2,49	-0,59
Reparto a F-Q	19,70	20,00	16,00	17,31	2,69	1,31
Desarenador	20,19	20,70	17,10	17,60	3,10	0,50

ambling™

PROYECTO CONSTRUCTIVO.

Elemento	Agua	Coronación	Solera	Terreno	Elevación	Excavación
Desbaste	20,71	21,00	20,00	17,60	3,40	-2,40
Arqueta llegada	20,71	21,30	20,00	17,60	3,70	-2,40
Tanque laminación	19,10	19,60	13,60	17,60	2,85	4,00
Digestor de fangos	18,20	18,60	13,60	17,60	1,00	4,00
Recirculación-	17,91	18,35	14,25	17,15	1,20	2,90
exceso						
B. fango digerido	18,20	18,60	13,50	17,60	1,00	4,10
Espesador	21,15	21,70	16,70	17,00	4,70	0,30
Tto fosas sépticas	17,85	18,40	14,35	17,60	0,80	3,25

3.2 Cálculo de la línea piezométrica

Datos iniciales de cálculo	
Las cotas mas representativas de los elementos actuales son:	
<u>Cámara de cloración</u>	
Cota de coronación	17,70
Cota de vertedero de salida	17,45
Cota de solera	14,95
Cota de terreno	16,85
<u>Decantador</u>	
Cota de coronación	18,35
Cota de vertedero de salida	17,85
Cota de fondo de canal de salida	17,55
Cota de fondo de parte cilíndrica	14,90
Cota de terreno	17,15
Reactor biológico	
Cota de coronación	19,06
Cota de vertedero de salida	18,61
Cota de vertedero de entrada	18,70
Cota de solera	13,26
Cota de terreno	17,30
<u>Tratamiento fisicoquímico</u>	
Cota de coronación	19,80
Cota de terreno	17,31
Cota solera canales de salida	18,81
Cota coronación canales de salida	19,10
Cota del vertedero de entrada a decantación lamelar	18,64
Cota del vertedero de entrada a cámara mezcla	18,96
Cota de solera canal salida a bypass y a biológico actual	16,00
Cota de solera de decantador y cámara floculación	14,64
Cota de solera de cámara de mezcla	17,90
Caudales para el dimensionamiento:	
Caudal máximo de llegada EDAR	520,00 m³/l

PROYECTO CONSTRUCTIVO.

Caudal medio de tratamiento	166,67 m³/h
Caudal máximo de tratamiento biológico	400,00 m³/h
Caudal máximo de recirculación interna	700,00 m³/h
Caudal máximo de recirculación externa líneas actuales	200,00 m³/h
Caudal máximo de recirculación externa nueva línea	140,00 m³/h
Caudal de fangos en exceso nueva línea	20,00 m³/h

Cálculo de las pérdidas entre la cámara de cloración y el nuevo decantador

Para el cálculo, suponemos que por la cámara de cloración sale el caudal máximo de tratamiento, incluido el de bypass.

Caudal máximo de tratamiento 520,00 m³/h

La salida de la cámara de cloración se realiza mediante vertedero de hormigón

Vertedero rectangular de pared gruesa.

	Q total	Q unit.	Longitud		
Uds	(m³/h)	m³/h	(m)	μ	
1,00	520,00	520,00	5,00	0,45	0,06
Cota de agua en cáma	ra de cloración				17,51

Pérdidas de carga hasta el nuevo decantador

Cota de coronación de decantadores existentes

Cota de coronación de decantador nuevo (= a los existentes)

Distancia coronación a solera canal perimetral (= a los existentes)

La conexión entre la cámara de cloración y el nuevo decantador se realiza mediante tubería PEAD 355 PN10
Caudal de tratamiento secundario 400,00 m³/h
Caudal considerado a cada decantador 133,33 m³/h

Desembocadura.

Describbocadara.						
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	K		
1,00	312,80	133,33	0,482	1,00	0,01	
Codos N3D 90º.						
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	К		
3,00	312,80	133,33	0,482	0,30	0,01	
Pérdida de carga com	tinua en tubería a	presión.				
Longitud		Caudal a	Caudal	Perdida		
(m)	Ø (mm)	buscar (m³/h)	(m³/h)	(m/km)		
25,00	312,80	133,33	133,33	0,900		
	Rugosidad	Viscosidad				
V (m/sg)	(mm)	cinemática				
0,482	0,50	1,31E-06			0,02	
Embocadura.						
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	К		
1,00	312,80	133,33	0,482	0,50	0,01	
Pérdidas totales					0,05	
Cota de agua posible en arqueta de salida de nuevo decantador						

18,35

18,35

0,80

17,55

PROYECTO CONSTRUCTIVO.

Altura de agua en canal perimetral
Al ser un canal circular con aportación uniforme el caudal se divide por dos

Altura crítica en canales.

Q (m³/h)	Nº canales	Q unit (m³/h)	Ancho (m)			
66,67	1,00	66,67	0,30		0,07	
Cota de agua en canal _l	perimetral				17,63	
Distancia solera canal p	perimetral a core	onación canal pe	rimetral		0,30	
Cota del vertedero perimetral de hormigón (= a los existentes)						
Distancia coronación ca	Distancia coronación canal perimetral hormigón a vertice inferior vertedero					
Cota de vertice inferior vertederos thompson						
Vertedero triangular de	e pared delgada					
Q total	Ø util	Longitud	Distancia	Nº de		
m³/h	decantador	vertedero	vertederos	vertederos		

Q total m³/h	Ø util decantador	Longitud vertedero	Distancia vertederos	Nº de vertederos	
133,33	14,50	45,553	0,250	182	
Q unit. m³/h	Angulo vertedero	μ	_		
0,733	90,00	0,40	_		0,03
Cota de agua en decant	ador nuevo				17,91
Altura recta decantado	r				4,00
Diámetro decantador					14,35
Diámetro poceta centra	al				2,90
Pendiente zona conica					10,00
Altura zona conica					0,60
Altura recta de la pocet	a central				0,60
Cota del fondo de la po	ceta central				13,15

Pérdidas hasta nueva arqueta de reparto a decantación

(mm)

0,50

La conexión con la arqueta de reparto a decantación se realiza con tubería de PEAD de 355mm PN 10							
Caudal de agua a cada decantador 133,33							
Caudal de recirculación	nueva línea				140,00	m³/h	
Caudal considerado a nuevo decantador 273,33							
Desembocadura.							
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K			
1,00	312,80	273,33	0,988	1,00	0,05		
Codos N3D 90º.							
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K			
3,00	312,80	273,33	0,988	0,30	0,04		
Pérdida de carga contin	ua en tubería a	presión.					
Longitud		Caudal a	Caudal	Perdida			
(m)	Ø (mm)	buscar (m³/h)	(m³/h)	(m/km)			
38,00	312,80	273,33	273,33	3,651			
	Rugosidad	Viscosidad					

Embocadura.

V (m/sg)

0,988

cinemática

1,31E-06

0,14

Uds Ø (mm) Q (m^3/h) 1,00 312,80 273,33	V (m/sg) 0,988	К		
1,00 312,80 273,33	0,988			
		0,50	0,02	
Pérdidas totales			0,26	
Cota de agua en arqueta de salida a decantador nuev	/0		18,17	
Comprobamos la cota en esta arqueta con el decant	tador actual que e	sta mas alejado		
Caudal de agua a cada decantador			133,33	m³/h
Caudal de recirculación decantadores actuales			200,00	m³/ł
Caudal de recirculación máximo considerado a cada o	decantador actual		150,00	m³/ł
Caudal considerado a decantadores actuales			283,33	m³/h
Para encajar la línea piezometrica ampliamos la tube	ría de conexión co	n los decantado	es actuales	
a 400 mm de diámetro en PEAD PN10				
Pérdidas en la tubería actual que no se cambia				
Desembocadura tubería actual				
Uds \emptyset (mm) Q (m^3/h)	V (m/sg)	K		
1,00 312,80 283,33	1,024	1,00	0,05	
Codos N3D 90º tubería actual				
Uds \emptyset (mm) Q (m^3/h)	V (m/sg)	K		
3,00 312,80 283,33	1,024	0,30	0,05	
Pérdida de carga continua en tubería a presión tuber	ía actual			
Longitud Caudal a	Caudal	Perdida		
(m) Ø (mm) buscar (m³/h)) (m³/h)	(m/km)		
28,00 312,80 283,33	283,33	3,918		
Rugosidad Viscosidad				
V (m/sg) (mm) cinemática				
1,024 0,50 1,31E-06			0,11	
Pérdidas en la tubería que se cambia				
Ensanchamiento brusco				
ø menor Ø mayor Q (m³/h)	V ø (m/sg)	V Ø (m/sg)		
312,80 352,60 283,33	1,024	0,806	0,00	
Pérdida de carga continua en tubería a presión nuevo	a tubería			
Longitud Caudal a	Caudal	Perdida		
(m) Ø (mm) buscar (m³/h)) (m³/h)	(m/km)		
35,00 352,60 283,33	283,33	2,107		
Rugosidad Viscosidad				
V (m/sg) (mm) cinemática				
0,806 0,50 1,31E-06			0,07	
Codos N3D 90º tubería nueva				
Uds \emptyset (mm) Q (m^3/h)	V (m/sg)	К		
3,00 352,60 283,33	0,806	0,30	0,03	
Embocadura tubería nueva en arqueta de reparto				
Uds \emptyset (mm) Q (m^3/h)	V (m/sg)	K		
1,00 352,60 283,33	0,806	0,50	0,02	

ambling™

Pérdidas totales					0,33		
Cota de agua en deca		17,90					
Cota de agua en salid	lo	18,23					
Cota de agua en salid		18,17					
Cota de agua adopta		18,23					
érdidas de carga en a	rqueta de repart	o a decantadores	;				
Guarda hasta el verte	edero de reparto a	a decantadores			0,07		
Cota de vertederos d	Cota de vertederos de reparto a decantadores						
Distancia vertederos		0,85					
Cota de coronación a	rqueta de reparto	a decantadores			19,15		
Altura arqueta de rep	oarto a decantado	res			3,10		
Cota de solera arque	ta de reparto a de	cantadores			16,05		
Caudal máximo de tra	atamiento secund	lario			400,00	m³/l	
Caudal máximo de re					340,00	-	
Relacion de recircula					2,04		
Caudal de salida a de					740,00	m³/	
Vertedero rectangula	ir de pared grueso	1.					
	Q total	Q unit.	Longitud				
Uds	(m³/h)	m³/h	(m)	μ			
3,00 Cota de agua en entr	740,00	246,67	1,80	0,45	0,07 18,37		
érdidas hasta la cone La conexión con el tra			tubería de 500 l	PEAD PN 10			
Desembocadura.							
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K			
1,00	440,60	740,00	1,348	1,00	0,09		
Codos N3D 90º.							
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K			
1,00	440,60	740,00	1,348	0,30	0,03		
Pérdida de carga con	tinua en tubería d	•					
Longitud		Caudal a	Caudal	Perdida			
(m)	Ø (mm)	buscar (m³/h)	(m³/h)	(m/km)			
5,00	440,60	740,00	740,00	4,383			
	Rugosidad	Viscosidad					
V (m/sg)	(mm)	cinemática					
1,348	0,50	1,31E-06			0,02		
Pérdida de carga con	tinua en tuberia d	•					
Longitud	d ()	Caudal a	Caudal	Perdida			
(m)	Ø (mm)	buscar (m³/h)	(m³/h)	(m/km)			
5,00	352,60	370,00	370,00	3,557			
1//	Rugosidad	Viscosidad					
V (m/sg)	(mm)	cinemática			0.02		
1,053	0,50	1,31E-06			0,02		

PROYECTO CONSTRUCTIVO.

6 / 4/25 000						
Codos N3D 90º. Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К		
2,00	352,60	370,00	1,053	0,30	0,03	
2,00 Embocadura.	352,60	370,00	1,053	0,30	0,03	
	O (mama)	O (m3/h)	1/ /m /cml	V		
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	<u>K</u>	0.03	
1,00	352,60	370,00	1,053	0,50	0,03	
Pérdidas totales					0,22	
Cota de agua en arque	eta de salida de b	iológico			18,59	
Cota de vertedero de s	salida actual de b	oiológico			18,61	
Guarda en la descarga					0,02	
Esta cota es compatib	le con el biológio	co actual en las	condiciones de m	náximo caudal		
Cota del vertedero de	salida adoptado				18,61	
Vertedero rectangular	de pared delgad	a de salida de b	iológico			
	Q total	Q unit.	Longitud			
Uds	(m³/h)	m³/h	(m)	μ		
1,00	370,00	370,00	3,00	0,62	0,05	
Cota de agua en reacto	or biológico				18,66	
Cota del vertedero de	entrada a biológ	ico			18,70	
Guarda en la descarga					0,04	
Esta cota es compatib	le con el biológio	co actual en las	condiciones de m	náximo caudal		
Cota del vertedero de	entrada adoptad	lo			18,70	
Cota de coronación de	e biológico				19,06	
Cota de solera de biolo	ógico				13,26	
Guarda en tratamiento	o biológico				0,36	
<u>Pérdidas en el vertede</u>	<u>ro de entrada</u>					
Vertedero rectangular	de pared delgad	a de entrada de	biológico			
	Q total	Q unit.	Longitud			
Uds	(m³/h)	m³/h	(m)	μ		
1,00 740,00 740,00 5,80 0,62						
Cota de agua en la arqueta de entrada a biológico						
Guarda hasta coronac	ión de biológico				0,31	

Pérdidas hasta el tratamiento fisicoquímico

La conexión del biológico con el fisicoquímico se realiza mediante una tubería Ø 500 PEAD PN 10 Desembocadura.

Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K	_
1,00	440,60	400,00	0,729	1,00	0,03
Codos N3D 90º.					
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K	_
3,00	440,60	400,00	0,729	0,30	0,02
Pérdida de carga conti	nua en tubería d	a presión.			
Longitud		Caudal a	Caudal	Perdida	
(m)	Ø (mm)	buscar (m³/h)	(m³/h)	(m/km)	_
75,00	440,60	400,00	400,00	1,309	

PROYECTO CONSTRUCTIVO.

V (m/sg)	Rugosidad (mm)	Viscosidad cinemática			
0,729	0,50	1,31E-06			0,10
Embocadura.					
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К	
1,00	440,60	400,00	0,729	0,50	0,01
Pérdidas totales					0,16
Cota de agua en la arqu	ueta de salida a l	oiológico			18,92
Cota de coronación de	fisicoquímico				19,80
Guarda hasta coronaci	ón de fisicoquím	ico			0,88
Caudales de tratamien	<u>to</u>				
Caudal total de entrada desde pretratamiento					
Caudal máximo de paso hacia biológico					

Caudales posibles entre F-Q y biológico

	Q total	A F-Q	A biológico	Bypass
Funcionamiento normal	520,00	120,00	400,00	0,00
F-Q en serie con biológico	520,00	520,00	400,00	120,00
Envio parcial a F-Q (20%)	520,00	104	400,00	120,00

Analizamos el caso mas desfavorable que es realizar pasar todo el caudal por el fisicoquímico El vertedero de salida a biológico se posiciona por encima de la cota de agua de la llegada del tratamiento biológico.

Cota de agua en arqueta de salida a biológico

18,92

El paso de la arqueta de reparto hacia el fisicoquímico se realiza con una compuerta mural, esta compuerta obtura un pasamuro actual de diámetro 400 mm.

Hueco circular en muro.

nueco circular en maro	•				
Q total	Nº	Q unitario	Ø	Sección m²	
m³/h	agujeros	m³/h	agujeros		
520,00	1	520	400,00	0,1257	
		Velocidad			
K		(m/sg)	_		
1,50		1,149			0,10
Cota en el canal de salid	da de decantaci	ón lamelar			19,02
Cota de los vertederos	de salida de dec	cantación lamela	r		19,10
Guarda en la descarga d	de los canales d	e salida de la ded	cantación lamela	r	0,08
La salida de la decantac	ción lamelar se h	nace mediante se	eis canales de 0,2	25 m de anchura,	
cada canal tiene una lo	ngitud de 2,00 r	netros.			
Calculamos la altura de	agua sobre los	canales, para sal	oer la cota de ag	ua en la decantaci	ón
Vertedero rectangular d	de pared delgad	la.			
	Q total	Q unit.	Longitud		
Uds	(m³/h)	m³/h	(m)	μ	
1,00	520,00	520,00	24,00	0,62	0,02
Altura considerada sob	re vertice super	ior de los canale	s salida decanta	dor lamelar	0,02

					10.10
_	derada en decantado				19,12
•	idor lamelar hacia la				iero
	esta mas bajo que lo de salida de la cáma			tacion iameiar.	19.64
Altura de agua sob		ra de Hoculació	ori		18,64 0,48
Hueco rectangular					0,46
_	en maro. Nº	Ounitaria	Altura hueco		
Q total m³/h	n≃ agujeros	Q unitario m³/h	(m)	Anchura (m)	
520,00	<u> </u>	520	0,48	5,15	
Sección (m²)	Velocidad (m/sg)	<i>K</i>	0,40	3,13	
2,47	verocrada (mysgy	0,058	1,50		0,000
•	le carga despreciable	•	1,50		0,000
Cota en la cámara	• ,	•			19,12
	nara de mezcla se ha	ce con tubería	de acero de 350	mm de diámetro	
Embocadura.					
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	К	
1,00	350,00	520,00	1,501	0,50	0,06
Codos N3D 90º.	·	·	•	·	·
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	К	
1,00	350,00	520,00	1,501	0,30	0,03
Pérdida de carga co	ontinua en tubería a	presión.			
Longitud		Caudal a	Caudal	Perdida	
(m)	Ø (mm)	buscar (m³/h)	(m³/h)	(m/km)	
2,50	350,00	520,00	520,00	7,228	
	Rugosidad	Viscosidad			
V (m/sg)	(mm)	cinemática	_		
1,501	0,50	1,31E-06			0,02
Desembocadura.					
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K	
1,00	350,00	520,00	1,501	1,00	0,11
Total pérdidas de c	_				0,22
Cota de agua en la					19,35
	de entrada a cámara				18,96
	n de la cámara de me	zcla y del F-Q			19,80
Guarda en la cáma					0,84
	rada a la cámara de				ergido
• •	ajo que los canales d	e salida de la de	ecantación lamel	ar.	
Hueco rectangular					
Q total	Nº	Q unitario	Altura hueco	Anchera (==1	
m³/h	agujeros 1	m³/h	(m)	Anchura (m)	
520,00	1 Valoridad (m/sa)	520 V	0,39	0,80	
Sección (m²)	Velocidad (m/sg)	N 160	1 50		0.02
0,31		0,469	1,50		0,02

PROYECTO CONSTRUCTIVO.

Cota de agua en la entrada a la cámara de mezcla (aguas abajo del parshall actual)

19,36

Pérdidas hasta la arqueta de reparto de pretratamiento

La conexión del fisicoquímico con la arqueta de reparto se realiza con una tubería de 400 mm de diámetro en acero.

Embocadura.					
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К	
1,00	400,00	520,00	1,149	0,50	0,03
Codos N3D 90º.					
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К	
1,00	400,00	520,00	1,149	0,30	0,02
Pérdida de carga cont	inua en tubería d	ı presión.			
Longitud		Caudal a	Caudal	Perdida	
(m)	Ø (mm)	buscar (m³/h)	(m³/h)	(m/km)	
11,00	400,00	520,00	520,00	3,612	
	Rugosidad	Viscosidad			
V (m/sg)	(mm)	cinemática			
1,149	0,50	1,31E-06			0,04
Desembocadura.					
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К	
1,00	400,00	520,00	1,149	1,00	0,07
Total pérdidas de carg	ga				0,16
Cota de agua en la arc	queta de salida a	fisicoquímico			19,52
Guarda hasta vertede	ro de reparto				0,05
Cota del vertedero de	reparto regulabl	e			19,57
Vertedero rectangular	r de pared delgad	la de compuerta i	egulable		
	Q total	Q unit.	Longitud		
Uds	(m³/h)	m³/h	(m)	μ	
1,00	520,00	520,00	1,20	0,62	0,12
Cota de agua en la arc	queta de llegada	de pretratamient	o		19,70
Guarda hasta coronac	ión de arqueta				0,30
Cota de coronación de	e arqueta de repa	arto			20,00
Diferencia coronación	arqueta reparto	-coronación F-Q			0,20
Posicion mas alta de v	ertedero de salid	da a biológico			19,70
Cota de agua en la arc	queta de salida a	biológico			18,92
Salto hidraulico					0,78

Pérdidas hasta el pretratamiento

La conexión con el tratamiento pretratamiento se realiza mediante tubería de Ø 500 PEAD PN 10 Desembocadura.

Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	К	
1,00	500,00	520,00	0,736	1,00	0,03
Codos N3D 90º.					

PROYECTO CONSTRUCTIVO.

		- (3 ()			
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K	
2,00	440,60	520,00	0,947	0,30	0,03
Pérdida de carga cont	inua en tubería a	•			
Longitud	d ()	Caudal a	Caudal	Perdida	
<u>(m)</u>	Ø (mm)	buscar (m³/h)	(m³/h)	(m/km)	
38,00	440,60	520,00	520,00	2,189	
	Rugosidad	Viscosidad			
V (m/sg)	(mm)	cinemática			
0,947	0,50	1,31E-06			0,08
Embocadura.					
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К	
1,00	500,00	520,00	0,736	0,50	0,01
Pérdidas totales					0,15
Cota de agua en la arc	queta de salida de	e desarenado			19,85
Guarda hasta vertede	ro de salida a tan	que laminacion			0,10
Cota del vertedero de	salida a tanque o	de laminacion			19,95
Vertedero rectangular	r de pared gruesa	a de salida a tanq	ue de laminacio	n	
		Caudal	Longitud		
Rango de caudales		m³/h	(m)	μ	
Caudal máximo		520,00	2,50	0,45	0,09
Caudal máximo- caud	al medio	353,33	2,50	0,45	0,07
Caudal máximo- caud	al biológico	120,00	2,50	0,45	0,04
Cota de agua aliviando	o a tanque de lan	ninacion aliviando	o caudal máxim	o	20,04
Guarda hasta vertede	ro de salida de de	esarenado alivian	do caudal máxi	mo	0,06
Guarda hasta vertede	ro de salida de de	esarenado alivian	do caudal máxi	mo	
Cota del vertedero de	salida de desare	nado			20,10
Distancia vertedero de	e salida a corona	ción			0,60
Cota de coronación de	e desarenado				20,70
Vertedero rectangulai	r de pared gruesa	a de salida de desc	arenado		
-	. Q total	Q unit.	Longitud		
Uds	(m³/h)	m³/h	(m)	μ	
1,00	520,00	520,00	2,50	0,45	0,09
Cota de agua en el car	•	•	-	•	20,19
3					-, -

El paso de la arqueta de salida hacia el desarenado se realiza con un hueco, siendo la perdida de carga despreciable.

Cota de agua en desarenado

20,19

El paso del desarenador al desbaste se realiza con un hueco, siendo la perdida de carga: *Hueco rectangular en muro.*

Q total m³/h	Nº agujeros	Q unitario m³/h	Altura hueco (m)	Anchura (m)	
520,00	1	520	0,19	0,80	
Sección (m²)	Velocidad	(m/sg)	К		
0,16		0,929	1,50		0,07
Cota de agua en salida ca	nales de desb	aste			20,26

ambling™

Diferencia coronación	canales desbaste	- desarenado			0,30
Cota de coronación ca					21,00
Cota de solera canales	s de desbaste				20,00
Calado minimo en sali	da canales desba	ste			0,26
Perdida de carga en ta	amizado				0,45
Cota aguas arriba de t					20,71
Guarda hasta coronac	ión				0,29
Diferencia coronación	canales desbaste	-arqueta llegad	la		0,30
Cota de coronación ar	queta de llegada				21,30
Cota máxima de agua	en arqueta de lle	gada			20,71
Guarda a vertedero de	e alivio				0,09
Cota del vertedero de	alivio				20,80
Distancia vertedero a	coronación				0,50
Vertedero rectangular	de alivio de caud	al			
	Q total	Q unit.	Longitud		
Uds	(m³/h)	m³/h	(m)	μ	
1,00	520,00	520,00	2,00	0,63	0,09
Cota en arqueta de lle	gada aliviando				20,89
Guarda a coronación a	arqueta de llegada	a e inicio canale	es desbaste		0,41
Posicionamiento tanqu					
Cota máxima de agua		e de laminación	ı (la del aliviadero	entrada)	19,95
Guarda en el tanque o					0,50
Cota de coronación ta	•				19,60
Diferencia coronación	•		ado		-1,10
Distancia coronación	•		,		6,00
Cota de solera de tano	•	i (igual a digesti	or)		13,60
Nivel máximo tanque	de laminación				19,10
Dándidos do sonos en el					
Pérdidas de carga en el			aa aé ati aa a		17.60
Cota del terreno en la			sas septicas		17,60
Elevacion de tratamie					0,80
Cota de coronación de		•			18,40
Nivel máximo conside	•	ie liegada			18,15
Perdida de carga en re	•				0,30
Cota en aguas debajo		:			17,85
El paso hacia el pozo d	_	iza mediante ui	n nueco que no tie	ene perdida de ca	_
Cota de agua en pozo	_				17,85
Altura del pozo de gru					2,50
Cota de solera de poz	_				15,35
El paso hacia el tanqu			nediante un huec	o que no tiene p	_
Cota de agua en tanqu		iento			17,85
Altura del tanque de a		:			3,50
Cota de solera del tan	que de almacenai	mento			14,35

PROYECTO CONSTRUCTIVO.

3.3 Cálculos de los bombeos

Cálculos de los	bombeos					
Cálculo bombe	o de recirculació	ón				
Caudal máxim	o de recirculaci	ón externa nuev	o decantador		140	m³/h
Nº de bombas	a instalar				1,00	+1R
Caudal unitari	o por bomba				140,00	m³/h
Caudal unitari	o por bomba ad	loptado			140,00	m³/h
Cota de agua (en decantador				17,91	m
<u>Pérdidas entre</u>	e decantadores y	y arqueta de rec	<u>irculación</u>			
Al caudal de re	ecirculación se u	ine el caudal de	fangos en exc	eso.		
Caudal total d	e fangos en exc	eso	_		20,00	m³/h
Caudal de reci	irculación por lír	nea			140,00	m³/h
	extraer en nuev				160,00	m³/h
Calculamos la	s pérdidas de ca	rga en la aspira	ción		•	
Embocadura.	•	-				
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	K		
1,00	250,00	160,00	0,905	0,50	0,021	m
•	•	tubería a presió	-	,	,	
	3	Caudal a				
Longitud		buscar	Caudal	Perdida		
(m)	Ø (mm)	(m³/h)	(m³/h)	(m/km)		
15,00	250,00	160,00	160,00	4,082		
	Rugosidad	Viscosidad		.,		
V (m/sg)	(mm)	cinemática				
0,905	0,50	1,31E-06			0,061	m
Válvula de cor	•	1,312 00			0,001	
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К		
1,00	250,00	160,00	0,905	0,07	0,003	m
Codos N3D 90	•	100,00	0,303	0,07	0,003	
Uds	 Ø (mm)	Q (m³/h)	V (m/sg)	К		
2,00	250,00	160,00	0,905	0,30	0,025	m
Desembocadu	•	100,00	0,303	0,30	0,023	111
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К		
1,00	250,00	160,00	0,905	1,00	0,042	m
1,00	230,00	100,00	0,903	1,00	0,042	***
Total pérdidas	s de carga en as _l	niración			0,152	m
•		nto en arqueta d	le recirculació:	2	17,76	
_		· ·		•	19,060	
	-	ntrada a biológi re coronación bi			0,250	
		olector de impu	_			
_	iz superior dei c trica mínima de	•	ISIUII		19,31 1,55	
Aitura geomei	irica minima de	iiipuisioii			1,33	111

Embocadura b	oomba					
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K		
1,00	125,00	140,00	3,169	0,50	0,256	m
Ensanchamier	nto brusco					
ø menor	Ø mayor	Q (m³/h)	V ø (m/sg)	V Ø (m/sg)		
125,00	200,00	140,00	3,169	1,238	0,190	
Válvula de coi	npuerta.					
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	K		
1,00	200,00	140,00	1,238	0,07	0,005	m
Válvula de ret	ención de bola					
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	K		
1,00	200,00	140,00	1,238	2,00	0,156	m
Pérdida de cal	rga continua en	tubería a presió	n impulsión in	dividual		
		Caudal a				
Longitud		buscar	Caudal	Perdida		
(m)	Ø (mm)	(m³/h)	(m³/h)	(m/km)		
8,00	200,00	140,00	140,00	10,022		
	Rugosidad	Viscosidad				
V (m/sg)	(mm)	cinemática				
1,238	0,50	1,31E-06			0,080	m
Codos N3D 90	º en impulsión ii	ndividual			·	
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	K		
2,00	200,00	140,00	1,238	0,30	0,047	m
T de derivació	n de llegada.					
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	K		
1,00	200,00	140,00	1,238	1,450	0,113	m
Codos N3D 90	º en impulsión g	ieneral	·		·	
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	K		
3,00	200,00	140,00	1,238	0,30	0,070	m
	rga continua en	tubería a presió			,	
	3	Caudal a	, 3			
Longitud		buscar	Caudal	Perdida		
(m)	Ø (mm)	(m³/h)	(m³/h)	(m/km)		
65,00	200,00	140,00	140,00	10,022		
•	Rugosidad	Viscosidad	•	,		
V (m/sg)	(mm)	cinemática				
1,238	0,50	1,31E-06			0,651	m
Desembocadu	•	,			,	
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	K		
1,00	200,00	140,00	1,238	1,00	0,078	m
	•	-	_,	_,		
-	s de carga en la i	mpulsión			1.65	m
Total pérdidas	s de carga en la i nétrica de impuls				1,65 3,20	m m

Bombeo de fang	os en exceso					
Caudal a impuls					20,00	m³/h
Nº de bombas ¡					•	+1R
Caudal unitario					20,00	
	•	recirculación (y	va calculada)		17,76	•
_	•	sión al espesado	-	as desfavorable	-	
Cota de corona	•	•	, por 50, 10 m	as desiavorable	21,25	
Cota eje del pas	•				21,15	m
Altura geométr		•			3,39	
Pérdidas en la i	-				0,00	
Ensanchamient	•					
ø menor	Ø mayor	Q (m³/h)	V ø (m/sg)	V Ø (m/sg)		
65,00	80,00	20,00	1,674	1,105	0,016	m
Válvula de com	•	20,00	1,07 1	1,103	0,010	•••
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	К		
1,00	80,00	20,00	1,105	0,07	0,004	m
Válvula de retei	•	20,00	1,105	0,07	0,004	111
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К		
1,00	80,00	20,00	1,105	2,00	0,125	m
1,00 Codos N3D 90º.	•	20,00	1,105	2,00	0,123	111
Uds		$O(m^3/h)$	V (m/sa)	К		
	Ø (mm)	Q (m³/h)	V (m/sg)		0.027	
2,00	80,00	20,00	1,105	0,30	0,037	m
Peraida de Carg	ja continua en	tubería impulsio	on cada iined			
		Caudal a	6 1 1	5 "· I		
Longitud	d (mana)	buscar	Caudal	Perdida		
<u>(m)</u>	Ø (mm)	(m³/h)	(m³/h)	(m/km)		
8,00	80,00	20,00	20,00	26,218		
14//1	Rugosidad	Viscosidad				
V (m/sg)	(mm)	cinemática_				
1,105	0,50	1,31E-06			0,210	m
T de derivación	•	0 (2 ()				
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K		
1,00	80,00	20,00	1,105	1,450	0,090	m
Pérdida de carg	ja continua en	tubería a presió	n general a es _i	pesador		
		Caudal a				
Longitud		buscar	Caudal	Perdida		
(m)	Ø (mm)	(m³/h)	(m³/h)	(m/km)		
30,00	80,00	20,00	20,00	26,217		
	Rugosidad	Viscosidad				
V (m/sg)	(mm)	cinemática				
1,105	0,50	1,31E-06			0,787	m
Codos N3D 90º.	_					
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K		

ambling[™]

2,00	80,00	20,00	1,105	0,30	0,037	m
Desembocadura		20,00	1,103	0,30	0,037	
Uds	 Ø (mm)	$Q(m^3/h)$	V (m/sg)	К		
1,00	80,00	20,00	1,105	1,00	0,062	m
Total pérdidas d	•		1,100	2,00	1,369	
Altura manomét	_					mca
Altura manomét	•					mca
Areara manome	trica ac irripai.	лоп ааортааа			3,00	mea
Sombeo de flotar	ntes					
Caudal a impuls	ar				5,00	m³/h
Nº de bombas					1,00	+1R
Caudal unitario	por bomba				5,00	m³/h
Cota de coronac	ción arqueta b	ombeo de flota	ntes		18,35	m
Cota de solera a	rqueta bombe	eo de flotantes			15,70	m
Cota máxima de	agua en la ar	queta de flotan	tes		17,91	m
Cota mínima de	agua en la arc	queta de flotant	es		15,90	m
Cota de coronac	ción desarenad	dores			20,70	m
Altura geométri	ca mínima de	impulsión			2,79	m
Altura geométri	ca máxima de	impulsión			4,80	m
<u>Pérdidas en la in</u>	npulsión de la	s bombas				
Embocadura bol	mba					
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	K		
1,00	65,00	5,00	0,419	0,50	0,004	m
Ensanchamiento	•	,	,	•	,	
ø menor	Ø mayor	$Q(m^3/h)$	V ø (m/sg)	V Ø (m/sg)		
65,00	80,00	5,00	0,419	0,276	0,001	m
Válvula de comp	•	2,22	3,123	3,2 - 3	2,22	
•	Ø (mm)	$Q(m^3/h)$	V (m/sg)	К		
1,00	80,00	5,00	0,276	0,07	0,000	m
Válvula de reten	•	2,23	2,2.0	-,	2,300	
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	К		
1,00	80,00	5,00	0,276	2,00	0,008	m
Pérdida de cargo	•	-	•	_,00	0,000	
		Caudal a				
Longitud		buscar	Caudal	Perdida		
(m)	Ø (mm)	(m³/h)	(m³/h)	(m/km)		
80,00	80,00	5,00	5,00	1,787		
55,55	Rugosidad	Viscosidad	3,00	1,707		
V (m/sg)	(mm)	cinemática				
0,276	0,50	1,31E-06			0,143	m
0,276 Codos N3D 90º.	0,30	1,311-00			0,143	111
Uds	Ø (mm)	Q (m³/h)	V (m/sa)	К		
5,00	· · · · · · · · · · · · · · · · · · ·		V (m/sg)		0,006	m
•	80,00	5,00	0,276	0,30	0,006	111
Desembocadura	1.					

Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К	
1,00	80,00	5,00	0,276	1,00	0,004 m
	ıs de carga en la i	•	·	,	0,166 m
•	métrica mínima d	•			2,96 mca
Altura manor	métrica máxima o	de impulsión			4,97 mca
Altura manor	métrica de impuls	sión adoptada			5,00 mca
	ngo digerido a es				10.20
	de agua en diges	stor			18,20 m
	a de digestor	.1			13,60 m
	nación de espesa 	aor			21,25 m
Altura geomé					3,05 m
_	étrica máxima				7,65 m
Caudal de im	•				8,00 m³/h
Numero de b					2,00 +2R
	rio por bomba	. • / .			5,00 m³/h
	arga en la impuls	<u>sion</u>			
Ensanchamie	_	0 / 3 // 1	17 - 7 - 1 - 1	udi. L	
ø menor	Ø mayor	Q (m³/h)	V ø (m/sg)	V Ø (m/sg)	
65,00	80,00	5,00	0,419	0,276	0,001
	tención de bola.	- (24)			
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K	
1,00	80,00	5,00	0,276	2,00	0,008
Válvula de co	•				
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K	
1,00	80,00	5,00	0,276	0,07	0,000
Codos N3D 9	0º.				
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K	
2,00	80,00	5,00	0,276	0,30	0,002
Pérdida de ca	arga continua en	tubería a presió	in impulsiónes	por línea	
		Caudal a			
Longitud		buscar	Caudal	Perdida	
(m)	Ø (mm)	(m³/h)	(m³/h)	(m/km)	
8,00	80,00	5,00	5,00	1,787	
	Rugosidad	Viscosidad			
V (m/sg)	(mm)	cinemática			
0,276	0,50	1,31E-06			0,014
Pérdida de ca	arga continua en	tubería a presió	in impulsiónes	por línea	
		Caudal a			
Longitud		buscar	Caudal	Perdida	
(m)	Ø (mm)	(m³/h)	(m³/h)	(m/km)	
25,00	80,00	10,00	10,00	6,766	
	Rugosidad	Viscosidad			
V (m/sg)	(mm)	cinemática			

ambling™

0,553	0,50	1,31E-06			0,169	
Codos N3D 90º.						
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	К		
3,00	80,00	10,00	0,553	0,30	0,014	
Desembocadura.						
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K		
1,00	80,00	10,00	0,553	1,00	0,016	
Total pérdidas de	e carga				0,224	
Altura manométi	rica mínima				3,27	mca
Altura manométi	rica máxima				7,87	mca
Altura manométi	rica media				5,57	mca
Altura manométi	rica adoptada	1			6,00	mca
ombeo de recup						
Cota máxima de	agua en tanq	ue de laminació	on		20,45	
Cota de solera de	e tanque de la	aminación			13,60	m
Cota de coronaci	ón de desare	nador			20,70	m
Altura geométric	a mínima				0,25	m
Altura geométric	a máxima				7,10	
Caudal de impuls	sión				150	m³/h
Numero de boml	bas				1	+1R
Caudal unitario p	or bomba				150	m³/h
<u>Pérdidas de carg</u>	a en la impuls	<u>sión</u>				
Ensanchamiento	brusco					
ø menor	Ø mayor	Q (m³/h)	V ø (m/sg)	V Ø (m/sg)		
100,00	200,00	150,00	5,305	1,326	0,807	
Válvula de retend	ción de bola.					
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K		
1,00	200,00	150,00	1,326	2,00	0,179	
Válvula de comp						
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	K		
1,00	200,00	150,00	1,326	0,07	0,006	
Codos N3D 90º.						
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К		
3,00	200,00	150,00	1,326	0,30	0,081	
Pérdida de carga	continua en	tubería a presió	in.			
		Caudal a				
Longitud		buscar	Caudal	Perdida		
(m)	Ø (mm)	(m³/h)	(m³/h)	(m/km)		
6,00	150,00	150,00	150,00	51,775		
	Rugosidad	Viscosidad				
	(mm)	cinemática				
V (m/sg)						
v (<i>m/sg)</i> 2,358	0,50	1,31E-06			0,311	

ambling™

Uds	Ø (mm)	Q (m³/h)	V (m/sg)	К		
1,00	150,00	150,00	2,358	1,00	0,283	
Total pérdidas d	-	,	,	,	1,667	
Altura manomé	_				1,92 m	nca
Altura manomé					8,77 m	
Altura manomé	trica media				5,34 m	
Altura manomé		1			7,00 m	
Bombeo de recup		•	miento fosas s	septicas	47.05	
Cota máxima de	-	ue			17,85 m	
Cota de solera d	•				14,35 m	
Cota de coronac		nador			20,70 m	
Altura geométri					2,85 m	
Altura geométri					6,35 m	
Caudal de impul					30,00 m	-
Numero de bom	nbas				1 +	1R
Caudal unitario	por bomba				30,00 m	n³/h
<u>Pérdidas de caro</u>	ga en la impuls	<u>sión</u>				
Ensanchamiento	o brusco					
ø menor	Ø mayor	Q (m³/h)	V ø (m/sg)	V Ø (m/sg)		
80,00	100,00	30,00	1,658	1,061	0,018	
Válvula de reter	ición de bola.					
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	K		
1,00	100,00	30,00	1,061	2,00	0,115	
Válvula de comp	-	-	•		-	
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	К		
1,00	100,00	30,00	1,061	0,07	0,004	
Codos N3D 90º.	,	,	,	,	,	
Uds	Ø (mm)	$Q(m^3/h)$	V (m/sg)	К		
3,00	100,00	30,00	1,061	0,30	0,052	
•	-	•	•	3,00	3,032	
Pérdida de carga continua en tubería a presión.						
Longitud		Caudal a buscar	Caudal	Perdida		
tongitua (m)	Ø (mm)	(m³/h)	(m³/h)	(m/km)		
25,00	100,00	30,00	30,00	18,070		
23,00			30,00	10,070		
V/m/sa)	Rugosidad	Viscosidad cinemática				
V (m/sg)	(mm)				0.452	
1,061	0,50	1,31E-06			0,452	
Desembocadura		0 (3 //)	1///	.,		
Uds	Ø (mm)	Q (m³/h)	V (m/sg)	K		
1,00	100,00	30,00	1,061	1,00	0,057	
Total pérdidas d	_				0,698	
Altura manométrica mínima					3,55 m	
Altura manomé					7,05 m	
Altura manomé	trica media				5,30 m	nca

PROYECTO CONSTRUCTIVO.

Altura manométrica adoptada

6,00 mca

Formulación empleada en el cálculo

FORMULACION EMPLEADA EN EL CALCULO

Para el cálculo de pérdidas de cargas el puntos singulares de las conducciones se utilizará la siguiente formula:

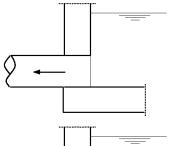
K= Coeficiente.

V= Velocidad(m/s)

 $g = 9.81 \text{ m/s}^2$

h= Pérdida de carga

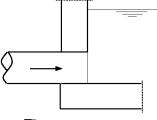
$$h = K \frac{V^2}{2g}$$


Para el cálculo de la velocidad se usará:

Q= Caudal(m³/h)

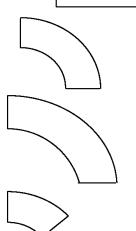
Ø= Diámetro (mm)

V= Velocidad


$$V = \frac{\sqrt{3600}}{\frac{\frac{\Phi^{2}}{1000} \cdot \pi}{4}}$$

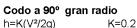
Embocadura

h=K(V2/2g)


K=0.5

Desembocadura

h=K(V2/2g)


K=1

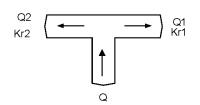
Codo a 90º radio normal

h=K(V2/2g)

K=0.3

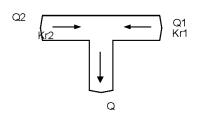
h=K(V²/2g)

K=0.2


h=K(V²/2g) K=0.4

PROYECTO CONSTRUCTIVO.

Te de separacion


 $h=Kr1*V^{2}/2g$ $h=Kr2*V^{2}/2g$

 $Kr1=1+0,3*(Q1/Q)^2$ $Kr2=1+0,3*(Q2/Q)^2$

ambling™

PROYECTO CONSTRUCTIVO.

Te de union

 $h=Kr1*V^{2}/2g$ $h=Kr2*V^{2}/2g$

 $Kr1=2+3*[(Q1/Q)^2-(Q2/Q)]$ $Kr1=2+3*[(Q2/Q)^2-(Q1/Q)]$

VALVULAS				
TIPO	k			
Compuerta	0,07			
Mariposa	0,12			
Retencion de clapeta	2,00			
Retencion de bola	2,00			
Valvula de flotador	6,00			
Valvula de pie	0,80			

Para el cálculo de pérdidas de cargas continuas en las conducciones se utilizará la fórmula de Prandt-Colebrook.

$$Q = \frac{\pi \cdot \sigma^2}{4 \cdot 10^6} \cdot \left(-2 log \left(\frac{2.51 \cdot 10^6 \cdot v}{\sigma \cdot \sqrt{2gJ\sigma}} \right) + \frac{K}{\sigma \cdot 3.71} \right) \cdot \sqrt{2gJ\sigma} \cdot 3.6$$

Siendo:

 $Q = Caudal(m^3/h).$

ø = Diámetro(mm)

v = Viscosidad cinemática(m²/s).

 $g = 9.81 \,\text{m}^2/\text{s}$

J = Pérdida de carga unitaria(m/km).

K = Rugosidad absoluta media(mm).

La pérdida de carga total en la conducción viene calculada por la expresión:

h= Pérdida de carga total
$$h = \frac{J \cdot L}{1000}$$

Siendo:

J= Pérdida de carga unitaria(m/km).

L= Longitud total de la conducción(m).

Tipo tuberia	k	k
	Tub. nueva	Tub. Usada
Aluminio, cobre, laton	<0,025	0,025
PVC, polietileno	<0,025	0,025
Fibrocemento	<0,025	0,025
Fundicion desnuda	0,22	0,330
Fundicion recubierta	0,10	0,220
Hormigon muy liso	0,30	0,600
Hormigon liso	0,50	1,000
Hormigon rugoso	1,00	4,000
Hormigon in situ	1.50	5,000

PROYECTO CONSTRUCTIVO.

Para el cálculo de pérdidas de cargas en huecos rectangulares en muros se utilizará la siguiente fórmula:

K= Coeficiente. (1,50)

V= Velocidad(m/s)

g= 9.81m/s²

h= Perdida de carga $oldsymbol{h} = K rac{oldsymbol{V}^2}{2\,oldsymbol{arrho}}$

Para el calculo de la velocidad se usara:

Q= Caudal(m³/h)

S= Seccion=A*B(m²)

Siendo:

 $V = \frac{Q}{3600 \cdot s}$

Para el cálculo de pérdidas de cargas en huecos circulares en muros se utilizará la siguiente fórmula:

K= Coeficiente (1,50)

V= Velocidad(m/s)

g= 9.81m/s²

h= Pérdida de carga

 $h = K \frac{V^2}{2g}$

Para el cálculo de la velocidad se usará:

D= Diámetro(mm).

Q= Caudal(m³/h)

S= Sección=

 $\frac{\left(D_{1000}\right)^2 \cdot \pi}{4}$

Siendo: $V = \frac{Q}{3600 \cdot S}$

Calculo de vertederos triangulares de pared delgada

 $\text{F\'ormula = } \qquad Q = N \cdot 3600 \cdot \frac{4}{5} \cdot \mu \cdot h^2 \cdot \sqrt{2gh} \cdot tg \frac{\theta}{2}$

Siendo:

Q= Caudal del vertedero en m³/h

 μ = Coeficiente de caudal del vertedero (0,40)

N= Numero de vertederos

Ø= Angulo en grados del vertedero

h= Altura de agua en el vertedero

Calculo de vertederos rectangulares

Fórmula = $Q = \mu \cdot l \cdot h \cdot \sqrt{2gh}$

Siendo:

Q= Caudal del vertedero en m³/sg

μ= Coeficiente de caudal del vertedero

Pared delgada = 0,62

Pared gruesa = 0,45

/= Longitud del vertedero (m)

h= Altura de agua en el vertedero (m)

Calculo de agujeros circulares de pared delgada.

Fórmula= $Q = K \cdot S \cdot \sqrt{2gn}$

Siendo:

Q= Caudal del agujero en m³/sg

K= Coeficiente de caudal del agujero (0,62)

S= Seccion del agujero en m²

h= Altura de agua desde el centro del agujero (m)

<u>ambling</u>™

PROYECTO CONSTRUCTIVO.

Calculo de la altura crítica en canales.

Para el cálculo de la altura de descarga en canales se utilizará la siguiente formula:

$$Hc = \sqrt[3]{\frac{Q^2}{g \cdot b^2}}$$

Siendo:

Hc= Altura crítica(m).

Q= Caudal unitario(m³/h).

b= Ancho de canal(m).

Para el cálculo de pérdidas de cargas en canales se utilizará la formula de Manning

Formula=
$$Q = S \cdot 3600 \cdot \frac{1}{\mu} \cdot R^{\frac{2}{3}} \cdot J^{\frac{1}{2}}$$

Siendo:

Q= Caudal(m³/h).

S= Sección mojada(m²).

μ= Coeficiente de rugosidad

R= Radio hidraulico(m).

J= Pendiente(m/m).

V= Velocidad(m/s).

Resultando la pérdida de carga total:

h= J*L(Longitud canal)

Calculo de la pérdida de carga en rejas.

Para el cálculo de la altura de descarga en canales se utilizará la formula de Kirschner:

$$\Delta h = f \cdot \left(\frac{a}{b}\right)^{\frac{4}{3}} \cdot \frac{v^2}{2g} \cdot \text{sen } \alpha$$

Siendo:

f= Coeficiente de forma de los barrotes.

a= Anchura de barrotes(mm).

b= Separación de barrotes(mm).

v= Velocidad de paso(m/s).

a= Angulo de inclinación de la reja con la horizontal(º).

La velocidad de paso la obtenemos a partir de:

Siendo:

Q= Caudal unitario(m³/h).

A= Altura de agua(m).

B= Ancho de canal(m).

S= A*B=Sección útil(m²).

a= Anchura de barrotes(mm).

b= Separación de barrotes(mm).

C= Colmatación(%).

K= Coeficiente de colmatación=1-C/100

<u>ambling</u>™

PROYECTO CONSTRUCTIVO.

Para el cálculo de pérdidas de carga en tuberias a seccion parcial se utilizará

La formula de Manning

$$V = \frac{1}{n} \cdot R^{\frac{2}{3}} \cdot J^{\frac{1}{2}}$$

en la que:

Tipo tuberia	n	n	
	Tub. nueva	Tub. Usada	
PVC, polietileno	0,0090	0,010	
Fibrocemento	0,0095	0,011	
Fundicion desnuda	0,013	0,017	
Fundicion recubierta	0,100	0,220	
Hormigon	0,013	0,017	
Acero	0,080	0,011	
Paredes ladrillo	0,012	0,030	
Paredes de tierra	0,020	0,033	
Hormigon in situ	1,500	5,000	

La formula general de Colebrook

$$\frac{1}{\sqrt{\lambda}} = -2\log\left(\frac{K}{12.84R} + \frac{2.51}{\text{Re}\sqrt{\lambda}}\right)$$

Donde:

SE/2020/20

R= Radio hidraulico en m

K= Coeficiente de rugosidad absoluta en m

I=Coeficiente de friccion en m/m Re= numero de Reynolds

I y Re se obtienen de :

$$j = \lambda \frac{V^2}{8\varrho R}$$
 Re $= \frac{4VR}{v}$

V=velocidad de circulacion en m/sg j=perdida de carga unitaria en m/m v=viscosidad cinematica en m²/sg

Despejando I y Re de las anteriores ecuaciones se obtiene

$$V = -2\sqrt{8gRj}\log\left(\frac{K}{14.84R} + \frac{0.63v}{R\sqrt{8gRj}}\right)$$

que permite obtener la velocidad de circulacion V en funcion del radio hidraulico R y la perdida de carga unitaria igual a la pendiente j.

Para los coeficientes de rugosidad de las tuberías se tomarán

Tipo tuberia	k	k
	Tub. nueva	Tub. Usada
Aluminio, cobre, laton	<0,025	0,025
PVC, polietileno	<0,025	0,025
Fibrocemento	<0,025	0,025
Fundicion desnuda	0,22	0,330
Fundicion recubierta	0,10	0,220
Hormigon muy liso	0,30	0,600
Hormigon liso	0,50	1,000
Hormigon rugoso	1,00	4,000
Hormigon in situ	1,50	5,000