REDACCIÓ DEL PROJECTE D'AMPLIACIÓ I MILLORA DEL TRACTAMENT A L'EDAR DE FORMENTERA. PROYECTO CONSTRUCTIVO

ambling[™]

REDACCIÓ DEL PROJECTE D'AMPLIACIÓ I MILLORA DEL TRACTAMENT A L'EDAR DE FORMENTERA.

EXPEDIENT DE CONTRACTACIÓ NÚM: SE/2020/20

REDACCIÓ DEL PROJECTE D'AMPLIACIÓ I MILLORA DEL TRACTAMENT A L'EDAR DE FORMENTERA. PROYECTO CONSTRUCTIVO

ambling™

Indice

1	Ant	tecedentes	3
2	Da	tos de partida	3
	.1	Datos aportados por el actual explotador	
2	2	Datos proporcionados por ABAQUA	4
2	3	Datos de caudales	6
2	.4	Análisis comparativo de los datos	7
2	5	Datos aportados en el Pliego de Prescripciones Técnicas	8
3	Cai	racterísticas del afluente	8
4	Cai	racterísticas de efluente	a

ambling™

PROYECTO CONSTRUCTIVO

1 Antecedentes

El objeto del presente anejo es establecer los parámetros y características tanto del agua de entrada a la EDAR como los requerimientos que debe cumplir después del tratamiento.

2 Datos de partida

Durante la redacción del proyecto se han recabado datos de caudales y cargas de distintas fuentes: los datos de que dispone el actual explotador de las instalaciones, los datos solicitados al Ayuntamiento, los datos de que dispone la Agencia y por ultimo los datos obtenidos en la campaña de aforos y análisis realizada. A continuación, resumimos todos estos datos.

2.1 Datos aportados por el actual explotador

Los valores medios de las analíticas de los años 2018, 2019, 2020, 2021 y 2022 son los siguientes:

DBO (mg/l) Año	01	02	02	04	0E	06	Mes 07	00	00	10	11	12	Madia
Allo	01	UZ	03	04	05	06	07	08	09	10	11	12	Media
2018		101	355	215	215	380	259	567	390	586	503	225	345
2019	129	149	149	425	441	532	635	237	212	140	115	115	273
2020	138	199	113	163	109	138	468	364	178	136	197	236	203
2021	207	130	156	206	89	284	376	448	573	177	63	303	251
2022	284	180	156	379	277	283	460	268	516	316	207	198	293
Media	189	152	186	277	226	323	439	377	374	271	217	215	272

DQO (mg/l)							Mes						
Año	01	02	03	04	05	06	07	08	09	10	11	12	Media
2018		317	1.066	628	709	1.255	863	1.890	1.298	1.453	1.676	748	1.082
2019	429	496	496	1.450	1.473	1.774	2.220	805	709	738	426	1.583	1.050
2020	469	661	405	333	530	439	1.843	1.396	746	726	651	785	748
2021	695	430	517	607	595	934	1.112	1.498	1.923	585	210	1.008	843
2022	933	596	505		919	932	693	566	875	681	661	656	729
Media	631	500	598	754	845	1.067	1.346	1.231	1.110	836	725	956	890

SS (mg/l)							Mes						
Año	01	02	03	04	05	06	07	08	09	10	11	12	Media
2018		206	583	328	226	325	765	1.528	656	2.865	999	317	800
2019	192	161	161	905	500	1.000	578	243	312	280	155	1.092	465
2020	189	306	217	118	118	135	780	491	262	602	390	291	325
2021	303	333	204	202	319	332	446	533	712	236	296	626	378
2022	600	569	198	746	315	335	216	386	358	278	433	169	383
Media	321	315	272	460	296	425	557	636	460	852	455	499	465

ambling™

PROYECTO CONSTRUCTIVO

N Total (mg/l)							Mes						
Año	01	02	03	04	05	06	07	08	09	10	11	12	Media
2018		48	71	84	99	99	99	99	99	99	99	99	90
2019	99	99	99	111	72	77	44	66	42	40	75	57	73
2020	38	49	29	38	69	57	85	91	49	95	68	69	61
2021	82	70	55	58	54	71	67	98	91	52	46	82	69
2022	83	72	75	78	75	59	97	83	104	82	64	65	78
Media	76	67	66	74	74	73	78	87	77	73	70	75	74

Pt (mg/l)							Mes						
Año	01	02	03	04	05	06	07	08	09	10	11	12	Media
2018		10	10	12	10	31	22	33	32	50	14	17	22
2019	11	9	9	41	15	17	15	17	16	15	18	17	17
2020	34	43	26	29	92	41	7	18	13	10	7	4	27
2021	3	4	5	4	11	4	12	16	17	4	4	4	7
2022	3	4	5	5	10	4	8	6	14	7	18	6	8
Media	13	14	11	18	28	20	13	18	18	17	12	9	16

El resumen de la serie de datos obtenidos es el siguiente:

Año	DBO5 (mg/l)	DQO (mg/l)	SS (mg/l)	NTK (mg/l)	Pt (mg/l)
2018	345	1.082	800	90	21,91
2019	273	1.050	465	73	16,73
2020	203	748	325	61	26,97
2021	251	843	378	69	7,33
2022	293	729	383	78	7,55
Media	268	931	492	74	18,23

2.2 Datos proporcionados por ABAQUA

La Agencia, ha proporcionado los datos históricos de las analíticas de los años 2018, 2019, 2020, 2021 y 2022, el resumen de los valores medios más importantes de estas analíticas es el siguiente:

DBO (mg/l)							Mes						
Año	01	02	03	04	05	06	07	08	09	10	11	12	Media
2018	460		80	200	340	480	280	940	760	250	95	150	367
2019	66		140	900	680	1.160	760	380	480	240	140	200	468
2020	160	160		150	180	420	1.520	930	460	300	280	440	455
2021	400	400	220	280	110	440	740	560	850	400	160	260	402
2022	120	200	200	100		480		820	650	510	270	254	360
Media	268	253	160	326	328	596	825	726	640	340	189	261	411

ambling™

PROYECTO CONSTRUCTIVO

DQO (mg/l) Año	01	02	03	04	05	06	Mes 07	08	09	10	11	12	Media
2018	844		142	1.033	774	922	768	2.976	2.133	958	291	405	1.022
2019	210		125	2.640	1.178	2.338	1.050	760	980	888	392		1.056
2020		1.260		264	603	663	2.554	1.996	1.026	544	513	1.150	1.057
2021	684	570	421	584	167	1.055	1.428	1.335	1.552	774	278	967	808
2022	158	214	508	230		640		1.656	725	930	562	425	605
Media	516	681	299	950	681	1.124	1.450	1.745	1.283	819	407	737	906

SS (mg/l)							Mes						
Año	01	02	03	04	05	06	07	08	09	10	11	12	Media
2018	330		48	660	308	346	293	3.299	1.538	510	100	187	693
2019	92		73	880	410	1.013	890	280	530	390	150	245	450
2020	180	307		160	187	233	1.140	1.060	510	223	193	415	419
2021	440	440	170	219	64	480	670	571	850	458	84	429	409
2022	110	113	226	123		290		742	338	530	236	244	295
Media	265	287	129	408	242	472	748	1.190	753	422	153	304	454

NTK (mg/l)							Mes						
Año	01	02	03	04	05	06	07	08	09	10	11	12	Media
2018	124		47	9	60	75	64	129	45	60	74	48	67
2019	46		46	52	101	80	47	72	79	50	46	27	59
2020	43	67		66	65	66	76	75	85	61	57	62	66
2021	84	39	57	60	13	67	78	81	84	45	45	79	63
2022	43	58	94	53		68		102	73	91	56	57	69
Media	71	55	61	48	60	71	66	92	73	61	56	54	65

Pt(mg/I)							Mes						
Año	01	02	03	04	05	06	07	08	09	10	11	12	Media
2018	14		24	15	11	12	13	28	24	12	9		16
2019	18		24	22	16	21	9	20	14	14	8	11	16
2020	6	10		11		8	19	17	11	8	9	11	11
2021	10	10	7	7	1	8	11	12	20	13	22	16	11
2022	23	19	13	22		10		20	17	12	18	9	16
Media	14	13	17	15	9	12	13	19	17	12	13	12	14

El resumen de la serie de datos obtenidos es el siguiente:

Año	DBO5 (mg/l)	DQO (mg/l)	SS (mg/l)	NTK (mg/l)	Pt (mg/l)
2018	367	1.022	693	67	16,04
2019	468	1.056	450	59	15,96
2020	455	1.057	419	66	10,88

PROYECTO CONSTRUCTIVO

Año	DBO5 (mg/l)	DQO (mg/l)	SS (mg/l)	NTK (mg/l)	Pt (mg/l)
2021	402	808	409	63	11,39
2022	360	605	295	69	16,43
Media	423	986	493	64	13,57

2.3 Datos de caudales

Los caudales aportados para la serie de años estudiada son los siguientes:

Q diario							Mes						
Año	01	02	03	04	05	06	07	08	09	10	11	12	Media
2018		735	831	1.126	1.522	2.229	2.914	2.885	2.491	1.478	1.006	898	1.647
2019	983	743	743	1.129	1.539	2.161	2.939	2.931	2.436	1.134	937	942	1.551
2020	924	667	846	1.091	1.223	1.291	2.145	2.642	1.887	1.377	1.172	838	1.342
2021	946	692	1.294	1.091	1.711	2.284	3.612	3.467	3.283	2.713	1.974	1.908	2.081
2022	1.735	1.508	1.782	2.011	2.637	3.165	4.037	4.991	3.075	2.621	1.821	1.534	2.622
Media	1.147	869	1.099	1.290	1.726	2.226	3.129	3.383	2.634	1.865	1.382	1.189	1.845

Para la verificación de los caudales se instaló un equipo de medición de caudal en el parshall flume que hay tras el desarenado pero los caudales que arrojaba eran muy altos debidos a diversos problemas en la instalación del propio parshall por lo que se instaló un equipo de medición de caudal en el vertedero de salida del desarenado, obteniendo los siguientes caudales:

CAUDALES MEDIOS DIARIOS (m³/d)							
Dia	Octubre-21	Noviembre-21	Diciembre-21	Enero-22			
1	996	909	746	556			
2	1.492	965	761	557			
3	1.633	860	729	626			
4	1.599	771	687	644			
5	1.768	1.061	643	664			
6	1.580	1.351	613	550			
7	1.599	548	728	593			
8	2.058	652	730	634			
9	1.740	854	755	619			
10	1.600	703	798	655			
11	1.613	712	723	535			
12	1.531	664	767	512			
13	1.321	722	763	469			
14	1.373	593	760	454			
15	1.352	653	739	427			
16	1.609	706	787	389			
17	1.900	931	803	398			
18	1.824	927	717	406			
19	1.506	969	688	424			
20	1.189	902	732	562			

ambling™

PROYECTO CONSTRUCTIVO

CAUDALES MEDIOS DIARIOS (m³/d)								
Dia	Octubre-21	Noviembre-21	Diciembre-21	Enero-22				
21	1.132	1.016	752	575				
22	1.159	1.107	779	400				
23	1.387	1.492	674	486				
24	1.170	1.250	642	518				
25	1.209	923	530	469				
26	1.194	846	492	449				
27	1.036	747	629	404				
28	1.050	731	609	422				
29	980	823	682	471				
30	909	788	615	344				
31	965		628	418				
Media	1.402	873	700	504				

2.4 Análisis comparativo de los datos

Se ha realizado un análisis de la información aportada por los distintos actores que intervienen de una u otra forma en la EDAR de Formentera para poder fijar los parámetros de partida y realizar una comprobación funcional de los elementos existentes, un estudio de alternativas de sistemas de tratamiento tanto en temporada alta como en temporada baja, y comprobar la idoneidad de los equipos instalados.

La comparativa entre la serie de datos recibidos es la siguiente:

Año	Analíticas	DBO5 (mg/l)	DQO (mg/l)	SS (mg/l)	NTK (mg/l)	Pt (mg/l)
2018	Abaqua	367	1.022	693	67	16,04
2010	Explotador	345	1.082	780	90	21,91
2010	Abaqua	468	1.056	450	59	15,96
2019	Explotador	273	1.050	465	73	16,73
2020	Abaqua	455	1.057	419	66	10,88
2020	Explotador	203	749	325	61	26,97
2021	Abaqua	402	986	493	64	13,57
2021	Explotador	251	843	378	69	7,329
2022	Abaqua	360	605	295	69	16,43
2022	Explotador	293	729	383	78	7,554
Media		342	918	470	70	15,34

Se observan muchas diferencias, especialmente en el fosforo de entrada y por otro lado se ve también una disminución de las cargas desde el inicio de la pandemia, recuperándose en 2022.

Lo mismo ocurre con los caudales, que pasan de medias de 1.647 m³/día a 1.342 m³/día durante la pandemia y pasan a 2.600 en 2022.

PROYECTO CONSTRUCTIVO

2.5 Datos aportados en el Pliego de Prescripciones Técnicas

Como ya hemos apuntado, el PPTP de la licitación apuntaba los siguientes caudales y cargas tratados en la actualidad en la EDAR:

- Caudal estimado de proyecto: 3.560 m³/día.
- DBO5 estimada de diseño: 510 mg/l
- Población equivalente de diseño estimada: 30.260 hab.eq. "
- Potencia contratada. 177 kwh (MT)

Que coincide con la información que figura en el proyecto de remodelación de 2.007.

En cuanto a los parámetros de diseño que estiman para la presente ampliación (teniendo en cuenta la información facilitada por el Consell Insular de Formentera, en el PPT figura la siguiente información:

- Caudal estimado de proyecto: 4.000 m³/d
- DBO5 estimada de diseño: 600 mg/l
- Población equivalente de diseño: 40.000 hab-eq

La planta actual en el proyecto de 2.007 se dimensionó para los siguientes datos de partida:

•	Habitantes equivalentes	30.260 hab
•	Caudales	
	 Caudal diario 	3.560 m ³ /d
	 Caudal medio 	148 m³/h
	 Caudal punta 	350 m³/h
•	Contaminación	
	o DBO 5	510 mg/l
	o DQO	1.200 mg/l
	o SST	783 mg/l
	o NTK	102 mg/l
	o Pt	17,3 mg/l
•	Temperatura mínima	20 °C
•	Temperatura máxima	25 °C

3 Características del afluente

A la vista de los datos recabados y de acuerdo con las indicaciones de la dirección de los trabajos se han adoptado los siguientes parámetros de partida:

T. baja	T. alta	
30.000	40.000	hab-eq
3.000,00	4.000,00	m³/d
125,00	166,67	m³/h
300,00	400,00	m³/h
520,00	520,00	m³/h
1.800,00	2.400,00	Kg /día
600	600	mg/l
120,00	120,00	gr/hab/eq
3.600,00	4.800,00	Kg /día
1.200	1.200	mg/l
	30.000 3.000,00 125,00 300,00 520,00 1.800,00 600 120,00 3.600,00	30.000 40.000 3.000,00 4.000,00 125,00 166,67 300,00 400,00 520,00 520,00 1.800,00 2.400,00 600 600 120,00 120,00 3.600,00 4.800,00

PROYECTO CONSTRUCTIVO

Carga de solidos en suspensión	2.349,00	3.132,00	Kg /día
Concentración media de solidos en suspensión	783	783	mg/l
Fracción volátil de SS	70,00	70,00	%
Carga de solidos en suspensión volátiles	1.644,30	2.192,40	Kg /día
Concentración media solidos suspensión volátiles	548,10	548,10	mg/l
Carga de NTK	306,00	408,00	Kg /día
Concentración media de NTK	102	102	mg/l
Carga de fosforo total	51,00	68,00	Kg /día
Concentración media de fosforo total	17	17	mg/l
Temperatura media agua en invierno	20,00	20,00	oC
Temperatura media agua en verano	25,00	25,00	oC

4 Características de efluente

Los parámetros de salida de agua tratada adoptados en el proyecto de 2007 citado anteriormente fueron:

DBO ₅ inferior a	25 mg/l
DQO inferior a	125 mg/l
SST inferior a	35 mg/l
Rendimiento eliminación NTK superior a	75 %
NTK inferior a	25,5 mg/l
Rendimiento eliminación Pt superior a	80 %
Pt inferior a	3,5 mg/l
Sequedad fangos superior a	20 %
	DQO inferior a SST inferior a Rendimiento eliminación NTK superior a NTK inferior a Rendimiento eliminación Pt superior a Pt inferior a

En el presente proyecto se han adoptado los siguientes parámetros de salida para el agua tratada:

•	DBO5 <u><</u>	25	mg/l.
•	DQO <u><</u>	125	mg/l.
•	SST <u><</u>	35	mg/l.
•	NTK <u><</u>	15	mg/l.
•	Pt <u><</u>	2	mg/l.
•	Ph	6-9	

En cuanto a las características del fango, están serán:

•	Contenido mínimo de materia seca en el fango	20,00 %
•	Contenido máximo sólidos volátiles en el fango	60,00 %